兩圓半徑分別為3㎝和7㎝,當圓心距d=10㎝時,兩圓的位置關系為(   )
A.外離B.內切C.相交D.外切
D.

試題分析:由兩圓的半徑分別為7cm和3cm,圓心距為10cm,根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系即可得出這兩個圓的位置關系.
解答:解:∵兩圓的半徑分別為7cm和3cm,圓心距為10cm,
又∵7+3=10,
∴這兩個圓的位置關系是外切.
故選D.
考點: 圓與圓的位置關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC為等邊三角形,D是△ABC內一點,且AD=2,將△ABD繞點A逆時針旋轉到△ACE的位置,這時點D走過的路線長為         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ACB中,∠C=90°,點O在AB上,以O為圓心,OA長為半徑的圓與AC,AB分別交于點D,E,且∠CBD=∠A.

(1)判斷直線BD與⊙O的位置關系,并證明你的結論;
(2)若AD∶AO=8∶5,BC=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經過O、C兩點,且圓心P恰好在∠AOB的角平分線上.(尺規(guī)作圖,保留痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為4,CD為⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC。

(1)求證:AB是⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O的半徑為5cm,A是⊙O內一點,AO=3cm,那么過點A最短的弦長為       cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP : AP="1" : 5.則CD的長為 (   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=30°,則∠BAC=      .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,P為⊙O外一點,PA、PB分別切⊙O于A、B, CD切⊙O于點E,分別交PA、PB于點C、D,若PA=5,則△PCD的周長為(    )

A.5                    B.10                   C.15                  D.20

查看答案和解析>>

同步練習冊答案