【題目】如圖,在矩形ABCD中,M,N分別是AD,BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn),若AB=8,AD=12,則四邊形ENFM的周長是多少?
【答案】20
【解析】分析:根據(jù)M是邊AD的中點(diǎn),得AM=DM=6,根據(jù)勾股定理得出BM=CM=10,再根據(jù)E、F分別是線段BM、CM的中點(diǎn),即可得出EM=FM=5,再根據(jù)N是邊BC的中點(diǎn),得出EM=FN,EN=FM,從而得出四邊形ENFM的周長.
詳解:∵M、N分別是邊AD、BC的中點(diǎn),AB=8,AD=12,
∴AM=DM=6,
∵四邊形ABCD為矩形,
∴∠A=∠D=90°,
∴BM=CM=10,
∵E、F分別是線段BM、CM的中點(diǎn),
∴EM=FM=5,
∴EN,FN都是△BCM的中位線,
∴EN=FN=5,
∴四邊形ENFM的周長為5+5+5+5=20.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)﹣24﹣11015
(2)﹣3×(﹣)÷
(3)(﹣)÷
(4)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3
(5)(﹣1)2009+(﹣2)3+2×(﹣3)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F分別在BC,CD上,三角形AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②AG=2GC,③BE+DF=EF,④S△CEF=2S△ABE正確的有_____(只填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,是上一點(diǎn),且,過點(diǎn)分別作,,垂足分別是,下列結(jié)論:①;②是的中點(diǎn);③垂直平分;④;其中正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,為邊上一點(diǎn),為上一點(diǎn),,設(shè),
(1)若,,則__________;__________;若,,則__________;__________;
(2)由此猜想與的關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC ,分別以AB 、AC 為邊在△ABC 的外部作等邊三角形ABD和等邊三角形ACE聯(lián)結(jié)DC 、BE 試說明DCBE的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,,過點(diǎn)作交對角線于點(diǎn),連接,取的中點(diǎn),連接.
(1)請你根據(jù)題意補(bǔ)全圖形;
(2)若,則菱形的面積為 .(直接寫出答案)
(3)請用等式表示線段、、之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1是由大小相同的小立方塊搭成的幾何體,請?jiān)趫D2的方格中畫出從上面和左面看到的該幾何體的形狀圖.(只需用2B鉛筆將虛線化為實(shí)線)
(2)若要用大小相同的小立方塊搭一個(gè)幾何體,使得它從上面和左面看到的形狀圖與你在圖2方格中所畫的形狀圖相同,則搭這樣的一個(gè)幾何體最多需要 個(gè)小立方塊.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com