(2008•遼寧)如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,看旗桿頂部M的仰角為30度.兩人相距28米且位于旗桿兩側(cè)(點(diǎn)B,N,D在同一條直線上).請(qǐng)求出旗桿MN的高度.(參考數(shù)據(jù):≈1.4,≈1.7,結(jié)果保留整數(shù))

【答案】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個(gè)直角三角形,應(yīng)利用其公共邊構(gòu)造三角關(guān)系,進(jìn)而可求出答案.
解答:解:過點(diǎn)A作AE⊥MN于E,過點(diǎn)C作CF⊥MN于F,
則EF=AB-CD=1.7-1.5=0.2,
在Rt△AEM中,∠AEM=90°,∠MAE=45°,
故AE=ME,
設(shè)AE=ME=x,
則MF=x+0.2,F(xiàn)C=28-x,
在Rt△MFC中,∠MFC=90°,∠MCF=30°,
x+0.2=(28-x),
則x=,
所以MN=ME+EF+FN=AE+CD+EF=+0.2+1.5≈12米.
答:旗桿的高度約為12米.
點(diǎn)評(píng):本題考查了解直角三角形的問題.該題是一個(gè)比較常規(guī)的解直角三角形問題,建立模型比較簡(jiǎn)單,但求解過程中涉及到根式和小數(shù),算起來麻煩一些.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點(diǎn).
(1)求過A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最。咳舸嬖,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省莆田市中考數(shù)學(xué)仿真模擬試卷(三)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點(diǎn).
(1)求過A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最。咳舸嬖,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年遼寧省十二市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點(diǎn).
(1)求過A,B,C三點(diǎn)拋物線的解析式并求出頂點(diǎn)F的坐標(biāo);
(2)在拋物線上是否存在點(diǎn)P,使△ABP為直角三角形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)試探究在直線AC上是否存在一點(diǎn)M,使得△MBF的周長(zhǎng)最小?若存在,求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案