【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點F.點E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長.

【答案】
(1)證明:連接BD,

∵AB是⊙O的直徑,

∴∠ADB=90°,

即∠ADC+∠CDB=90°,

∵∠EAC=∠ADC,∠CDB=∠BAC,

∴∠EAC+∠BAC=90°,

即∠BAE=90°,

∴直線AE是⊙O的切線;


(2)解:∵AB是⊙O的直徑,

∴∠ACB=90°,

Rt△ACB中,∠BAC=30°,

∴AB=2BC=2×4=8,

由勾股定理得:AC= =4 ,

Rt△ADB中,cos∠BAD= = ,

,

∴AD=6,

∴BD= =2 ,

∵∠BDC=∠BAC,∠DFB=∠AFC,

∴△DFB∽△AFC,

,

∴BF=


【解析】(1)由直徑所對的圓周角是直角得:∠ADB=90°,則∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,則直線AE是⊙O的切線;(2)分別計算AC和BD的長,證明△DFB∽△AFC,列比例式得: ,得出結(jié)論.
【考點精析】利用解直角三角形對題目進行判斷即可得到答案,需要熟知解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù) (k≠0)的圖象過點A(﹣3,2).

(1)求這個反比例函數(shù)的解析式;
(2)若B(x1 , y1),C(x2 , y2),D(x3 , y3)是這個反比例函數(shù)圖象上的三個點,若x1>x2>0>x3 , 請比較y1 , y2 , y3的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC、AB上,且DE∥AB,EF∥AC.

(1)求證:BE=AF;
(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某過天橋的設(shè)計圖是梯形ABCD(如圖所示),橋面DC與地面AB平行,DC=62米,AB=88米.左斜面AD與地面AB的夾角為23°,右斜面BC與地面AB的夾角為30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求橋面DC與地面AB之間的距離(精確到0.1米)sin23°=0.3907,cos23°=0.9205,tan23°=0.4245

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E、F分別是了AB、AD上的一點,且BF⊥CE,垂足為G,求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓內(nèi)接四邊形ABCD的邊AB過圓心O,過點C的切線與邊AD所在直線垂直于點M,若∠ABC=55°,則∠ACD等于(
A.20°
B.35°
C.40°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是將拋物線y=﹣x2平移后得到的拋物線,其對稱軸為x=1,與x軸的一個交點為A(﹣1,0),另一個交點為B,與y軸的交點為C.

(1)求拋物線的函數(shù)表達式;
(2)若點N為拋物線上一點,且BC⊥NC,求點N的坐標;
(3)點P是拋物線上一點,點Q是一次函數(shù)y= x+ 的圖象上一點,若四邊形OAPQ為平行四邊形,這樣的點P、Q是否存在?若存在,分別求出點P,Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD沿EF對折,使點A落在點C處,若∠A=60°,AD=4,AB=8,則AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.

查看答案和解析>>

同步練習冊答案