【題目】如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A,C分別在DG、DE上,連接AE、BG.
(1)試猜想線段BG和AE的數(shù)量關(guān)系,請(qǐng)直接寫出你得到的結(jié)論;
(2)將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖②,(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說明理由.
【答案】
(1)解:BG=AE.理由如下:
如圖①,∵△ABC是等腰直角三角形,∠BAC=90°,
點(diǎn)D是BC的中點(diǎn),
∴BD=CD=AD,
∵在△BDG和△ADE中, ,
∴△BDG≌△ADE(SAS),
∴BG=AE
(2)解:證明:連接AD,
∵Rt△BAC中,D為斜邊BC的中點(diǎn),
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°,
∵EFGD為正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE,
在△BDG和△ADE中, ,
∴△BDG≌△ADE(SAS),
∴BG=AE.
【解析】(1)在Rt△BDG與Rt△EDA;根據(jù)邊角邊定理易得Rt△BDG≌Rt△EDA;故BG=AE;(2)連接AD,根據(jù)直角三角形與正方形的性質(zhì)可得Rt△BDG≌Rt△EDA;進(jìn)而可得BG=AE.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式(x﹣1)2﹣2(x﹣1)+1的結(jié)果是( )
A.(x﹣1)(x﹣2)
B.x2
C.(x+1)2
D.(x﹣2)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地電話撥號(hào)入網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一:
(A)計(jì)時(shí)制:0.05元/分;
(B)包月制:50元/月(限一部個(gè)人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費(fèi)0.02元/分.
(1)某用戶某月上網(wǎng)的時(shí)間為分,請(qǐng)你用含的代數(shù)式分別寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用;
(2)如果某用戶一個(gè)月內(nèi)上網(wǎng)的時(shí)間為20小時(shí),你認(rèn)為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于a,b的多項(xiàng)式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab項(xiàng),則m=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)事件,事件A:367人中至少有2人生日相同;事件B:拋擲一枚均勻的骰子,朝上的面點(diǎn)數(shù)為偶數(shù).下列說法正確的是( )
A.事件A、B都是隨機(jī)事件
B.事件A、B都是必然事件
C.事件A是隨機(jī)事件,事件B是必然事件
D.事件A是必然事件,事件B是隨機(jī)事件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com