如圖所示,點A,F(xiàn),C,D在同一直線上,點B和點E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.

(1)求證:四邊形BCEF是平行四邊形;

(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形     BCEF是菱形.

(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.

在△ABC和△DEF中,

,

∴△ABC≌DEF(SAS),

∴BC=EF,∠ACB=∠DFE,∴BC∥EF,

∴四邊形BCEF是平行四邊形.

(2)解:連接BE,交CF與點G,

∵四邊形BCEF是平行四邊形,

∴當BE⊥CF時,四邊形BCEF是菱形,

∵∠ABC=90°,AB=4,BC=3,

∴AC==5,

∵∠BGC=∠ABC=90°,∠ACB=∠BCG,

∴△ABC∽△BGC,

=,即=,∴CG=,

∵FG=CG,

∴FC=2CG=,∴AF=AC﹣FC=5﹣=,

∴當AF=時,四邊形BCEF是菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,點E,F(xiàn)分別是線段AC,BC的中點,若EF=2.5厘米,求線段AB的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、正方形ABCD、正方形BEFG和正方形RKPF的位置如圖所示,點G在線段DK上,正方形ABCD的邊長為4,F(xiàn)G=3,F(xiàn)P=1,則△DEK的面積為
9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、正方形ABCD,正方形BEFG和正方形RKPF的位置如圖所示,點G在線段DK上,且G為BC的三等分點,R為EF中點,正方形BEFG的邊長為4,則△DEK的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鄂州)在平面坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2012個正方形的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,點C在線段BE上,在BE同側(cè)作等邊△ABC和等邊△DCE,那么,從旋轉(zhuǎn)的角度我們可以看到,△ACE旋轉(zhuǎn)后與△BCD重合.
(1)寫出旋轉(zhuǎn)角的度數(shù)及旋轉(zhuǎn)方向;
(2)在圖中經(jīng)過旋轉(zhuǎn)后能夠重合的三角形共有哪幾對?
(3)如果∠2=40°,那么∠BDE=
80°
80°

查看答案和解析>>

同步練習冊答案