【題目】如圖,在△ABC中,ABAC,DBC邊上的中點,連結ADBE平分∠ABCAC于點E,過點EEFBCAB于點F

1)若∠C40°,求∠BAD的度數(shù);

2)求證:FBFE

【答案】(1)50°;(2)答案見解析.

【解析】

1)利用等腰三角形的三線合一的性質證明∠ADB=90°,再利用等腰三角形的性質求出∠ABC即可解決問題.
2)只要證明∠FBE=FEB即可解決問題.

解:∵ABAC,∠C40°

∴∠ABC=∠C40°,

BDCDABAC,

ADBC

∴∠ADB90°,

∴∠BAD90°﹣∠ABC90°40°50°

2)證明:∵BE平分∠ABC

∴∠ABE=∠CBEABC,

EFBC,

∴∠FEB=∠CBE

∴∠FBE=∠FEB,

FBFE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“鄂爾多斯,溫暖全世界”這句廣告語及上乘的質量使鄂爾多斯的羊絨制品聞名中外,我市某羊絨企業(yè)的工廠店在銷售中發(fā)現(xiàn):某種羊絨圍巾平均每天可售出件,每件可獲利元;若售價減少元,平均每天就可多售出件;若想平均每天銷售這種圍巾盈利元,并使顧客得到更大的實惠,那么每件圍巾應降價多少元?若想獲利最大,應降價多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售A B兩種型號的電風扇,A型號每臺進價為200元,B型號每臺進價分別為150元,下表是近兩天的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一天

3

5

1620

第二天

4

10

2760

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

(1)A、B兩種型號的電風扇的銷售單價;

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤不少于1060元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017懷化,第10題,4分)如圖,AB兩點在反比例函數(shù)的圖象上,CD兩點在反比例函數(shù)的圖象上,ACy軸于點EBDy軸于點FAC=2,BD=1EF=3,則的值是(  )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABCD中,,,射線AE平分動點P的速度沿AD向終點D運動,過點PAE于點Q,過點P,過點Q,交PM于點設點P的運動時間為,四邊形APMQ與四邊形ABCD重疊部分面積為

______用含t的代數(shù)式表示

當點M落在CD上時,求t的值.

St之間的函數(shù)關系式.

如圖2,連結AM,交PQ于點G,連結AC、BD交于點H,直接寫出t為何值時,GH與三角形ABD的一邊平行或共線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點 B、O分別落在點 B1、C1 處,點B1x軸上,再將△AB1C1 繞點 B1 順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2 繞點C2 順時針旋轉到△A2B2C2 的位置, A2 在x軸上依次進行下去….若點 A(,0),B(0,4),則點 B2016 的橫坐標為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市高中招生體育考試前教育部門為了解全市初三男生考試項目的選擇情況(每人限選一項),對全市部分初三男生進行了調查,將調查結果分成五類:A.實心球(2kg);B.立定跳遠;C.50米跑;D.半場運球;E.其他.并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題

(1)本次調查的總人數(shù)為

(2)將上面的條形統(tǒng)計圖補充完整;

(3)假定全市初三畢業(yè)學生中有5500名男生,試估計全市初三男生中選“50米跑的人數(shù)有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】常用的分解因式的方法有提取公因式法、公式法,但有更多的多項式只用上述方法就無法分解,如,我們細心觀察這個式子就會發(fā)現(xiàn),前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產生公因式,然后提取公因式就可以完成整個式子的分解因式了,過程為:,這種分解因式的方法叫分組分解法,利用這種方法解決下列問題.

(1)分解因式:;

(2)△ABC三邊a、b、c滿足,判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一根長的鐵絲分為兩段,并把每一段都彎成一個正方形,設其中一個正方形的邊長為,則另一個正方形的邊長為________,設這兩個正方形的面積的和為,則之間的函數(shù)關系式為________;當兩個正方形的邊長分別為________、________時,有最小值,最小值是________

查看答案和解析>>

同步練習冊答案