【題目】已知一次函數(shù)的圖象經(jīng)過(guò)A(﹣1,4),B1,﹣2)兩點(diǎn).

1)求該一次函數(shù)的解析式;

2)直接寫(xiě)出函數(shù)圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo).

【答案】1)一次函數(shù)解析式為y=﹣3x+1;(2)一次函數(shù)與x軸的交點(diǎn)坐標(biāo)為(,0),與y軸的交點(diǎn)坐標(biāo)為(0,1).

【解析】

1)利用待定系數(shù)法容易求得一次函數(shù)的解析式;

2)分別令x=0y=0,可求得與兩坐標(biāo)軸的交點(diǎn)坐標(biāo).

1)設(shè)直線的解析式為y=kx+b

∵圖象經(jīng)過(guò)點(diǎn)(﹣1,4),(1,﹣2)兩點(diǎn),∴把兩點(diǎn)坐標(biāo)代入函數(shù)解析式可得:,解得:,∴一次函數(shù)解析式為y=3x+1

2)在y=3x+1中,令y=0,可得:﹣3x+1=0,解得:x

x=0,可得:y=1,∴一次函數(shù)與x軸的交點(diǎn)坐標(biāo)為(,0),與y軸的交點(diǎn)坐標(biāo)為(0,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角中,,,點(diǎn) 內(nèi)一點(diǎn),連接, ,連接、交于點(diǎn).

1)如圖 1,求的度數(shù);

2)如圖 2,連接于點(diǎn),連接,若平分,求證:

3)如圖 3,在(2)的條件下,、分別于點(diǎn),,連接,若的面積與的面積差為 6,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)點(diǎn)到圓的最小距離為,最大距離為,則該圓的半徑是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)安裝有進(jìn)出水管的30升容器,水管單位時(shí)間內(nèi)進(jìn)出的水量是一定的,設(shè)從某時(shí)刻開(kāi)始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,得到水量y(升)與時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信思給出下列說(shuō)法,其中錯(cuò)誤的是(  )

A. 每分鐘進(jìn)水5

B. 每分鐘放水1.25

C. 12分鐘后只放水,不進(jìn)水,還要8分鐘可以把水放完

D. 若從一開(kāi)始進(jìn)出水管同時(shí)打開(kāi)需要24分鐘可以將容器灌滿

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)在圖中畫(huà)出△ABC與關(guān)于y軸對(duì)稱(chēng)的圖形△A1B1C1,并寫(xiě)出頂點(diǎn)A1、B1、C1的坐標(biāo);

(2)若將線段A1C1平移后得到線段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DAB上,點(diǎn)EBC上,BDBE

1)請(qǐng)你再添加一個(gè)條件,使得△BEA≌△BDC,并給出證明.你添加的條件是   

2)根據(jù)你添加的條件,再寫(xiě)出圖中的一對(duì)全等三角形   .(只要求寫(xiě)出一對(duì)全等三角形,不再添加其他線段,不再標(biāo)注或使用其他字母,不必寫(xiě)出證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關(guān)系,并說(shuō)明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(3,0),B(0-1),連接AB,過(guò)B點(diǎn)作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點(diǎn)坐標(biāo);

(2)如圖2,P點(diǎn)從A點(diǎn)出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,CP、Q三點(diǎn)共線,求此時(shí)P點(diǎn)坐標(biāo)及∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案