平面直角坐標(biāo)系中,⊙M的圓心坐標(biāo)為(0,2),半徑為1,點N在x軸的正半軸上,如果以點N為圓心,半徑為4的⊙N與⊙M相切,則圓心N的坐標(biāo)為  ▲  
,0)或(,0)
分別從⊙M與⊙N內(nèi)切或外切去分析:
①⊙M與⊙N外切,MN=4+1=5,,
∴圓心N的坐標(biāo)為(,0)。
②⊙M與⊙N內(nèi)切,MN=4﹣1=3,,
∴圓心N的坐標(biāo)為(,0)。
綜上所述,圓心N的坐標(biāo)為(,0)或(,0)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的圓心O到直線l的距離為4cm,⊙O的半徑為1cm,將直線l向右(垂直于l的方向)平移,使l與⊙O相切,則平移的距離為(   )
A.1cmB.3cmC.5cmD.3cm或5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過A、C 、D三點的圓的圓心為E,過B、F、E三點的圓的圓心為D,如果∠A=63°,那么∠θ=    ▲   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,等腰梯形ABCD中,AD∥BC,以A為圓心,AD為半徑的圓與BC切于點M,與AB交于點E,若AD=2,BC=6,則的長為( )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓半徑分別為7,3,圓心距為4,則這兩圓的位置關(guān)系為【   】
A.外離B.內(nèi)切C.相交D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

圓錐底面半徑為,母線長為2,它的側(cè)面展開圖的圓心角是  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知∠ABC=90°,AB=πr,BC=,半徑為r的⊙O從點A出發(fā),沿A→B→C方向滾動到點C時停止.請你根據(jù)題意,在圖上畫出圓心O運動路徑的示意圖;圓心O運動的路程是    ▲   .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,AB是⊙O的直徑,點P在弧AB上(不含點A、B),把△AOP沿OP對折,點A的對應(yīng)點C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當(dāng)P、C都在AB上方時(如圖3),過C點作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.

查看答案和解析>>

同步練習(xí)冊答案