【題目】如圖,拋物線與交于點,過點作軸的平行線,分別交兩條拋物線于點,則以下結(jié)論:①無論取何值,的值總是正數(shù);②;③其中正確結(jié)論是( )
A. ①②B. ①③C. ②③D. 都正確
【答案】B
【解析】
利用二次函數(shù)的性質(zhì)得到y2的最小值為1,則可對①進(jìn)行判斷;把A點坐標(biāo)代入y1=a(x+2)2-3中求出a,則可對②進(jìn)行判斷;利用拋物線的對稱性計算出AB和AC,則可對③進(jìn)行判斷.
解:∵y2=+1,
∴y2的最小值為1,所以①正確;
把A(1,3)代入y1=a(x+2)2-3得a(1+2)2-3=3,
∴3a=2,所以②錯誤;
拋物線y1=a (x+2)2-3的對稱軸為直線x=-2,拋物線y2=+1
的對稱軸為直線x=3,
∴AB=2×3=6,AC=2×2=4,
∴2AB=3AC,所以③正確.
故答案為①③.故選擇B項.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=kx2﹣(k+3)x+3圖象的對稱軸為:直線x=2.
(1)求該二次函數(shù)的表達(dá)式;
(2)畫出該函數(shù)的圖象,并結(jié)合圖象直接寫出:
①當(dāng)y<0時,自變量x的取值范圍;
②當(dāng)0≤x<3時,y的取值范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三個頂點的坐標(biāo)分別.
(1)畫出;
(2)以B為位似中心,將放大到原來的2倍,在右圖的網(wǎng)格圖中畫出放大后的圖形△;
(3)寫出點A的對應(yīng)點的坐標(biāo):___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=12 cm,C為AB延長線上一點,CD與⊙O相切于點D,過點B作弦BE∥CD,連接DE.
(1)求證:點D為的中點;
(2)若∠C=∠E,求四邊形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個不相等的實數(shù)根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”.例如,方程x2-6x+8=0的兩個根是2和4,則方程x2-6x+8=0就是“倍根方程”.
(1)若一元二次方程x2-3x+c=0是“倍根方程”,則c= ;
(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2-5mn+n2的值;
(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點M(1+t,s),N(4-t,s),都在拋物線y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周老師家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應(yīng)值如下表所示:
時間第x天 | 1 | 3 | 5 | 7 | 10 | 11 | 12 | 15 |
日銷量P(千克) | 320 | 360 | 400 | 440 | 500 | 400 | 300 | 0 |
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)從你學(xué)過的函數(shù)中,選擇合適的函數(shù)類型刻畫P隨x的變化規(guī)律,請直接寫出P與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在這15天中,哪一天銷售額達(dá)到最大,最大銷售額是多少元;
(4)周老師非常熱愛公益事業(yè),若在前5天,周老師決定每銷售1千克紅心獼猴桃就捐獻(xiàn)a元給“環(huán)保公益項目”,且希望每天的銷售額不低于2800元以維持各種開支,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點A順時針旋轉(zhuǎn)α(0°<α<180°)后與⊙O相切,則α的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分線,CE⊥AN,垂足是E,連接DE交AC于F.
(1)求證:四邊形ADCE為矩形;
(2)求證:DF∥AB,DF=;
(3)當(dāng)△ABC滿足什么條件時,四邊形ADCE為正方形,簡述你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com