如圖所示,已知A點(diǎn)的坐標(biāo)為(0,3),⊙A的半徑為1,點(diǎn)B在x軸上.
①若點(diǎn)B的坐標(biāo)為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關(guān)系;
②能否在x軸的正半軸上確定一點(diǎn)B,使⊙B與y軸相切,并且與⊙A相切?請(qǐng)說(shuō)明理由.
分析:(1)首先利用勾股定理求得線段AB的長(zhǎng),然后與兩圓的半徑之和比較后即可確定答案;
(2)可過(guò)A作x軸的平行線交⊙A于D,連接OD交⊙A于C,連接AC并延長(zhǎng)交x軸于B,則⊙B以BC為半徑,與y軸相切,與⊙A外切.
解答:解:(1)外離
∵A點(diǎn)的坐標(biāo)為(0,3),點(diǎn)B的坐標(biāo)為(4,0),
∴AB=
32+42
=5,
∵⊙A的半徑為1,⊙B的半徑為3,
∴1+3=4<5
∴兩圓相離;

(2)過(guò)A作AD∥x軸,連接OD交⊙A于C,連接AC并延長(zhǎng)交x軸于B,則以B為圓心,以O(shè)B為半徑的⊙B與y軸相切,并且與⊙A外切.
理由如下:
∵AD∥x軸,
∴∠ADO=∠BOD;
∵AC=AD,
∴∠ADC=∠ACD,
∴∠OCB=∠BOC,
∴BC=OB,
∴以B為圓心,以O(shè)B為半徑的⊙B與y軸相切,并且與⊙A外切.
此時(shí)點(diǎn)B的坐標(biāo)為:(4,0);
點(diǎn)評(píng):本題主要考查了圓與圓的位置關(guān)系、坐標(biāo)與圖形性質(zhì)、直線與圓的位置關(guān)系等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A點(diǎn)的坐標(biāo)為(6,0),B是y軸正半軸上的一動(dòng)點(diǎn),直線AB交直線y=
1
2
x
于點(diǎn)C,矩形ADEF的頂點(diǎn)D、E分別在直線y=
1
2
x
和直線AB上,頂點(diǎn)F在x軸上.
(1)若點(diǎn)B的坐標(biāo)為(0,4).
①求直線AB所表示的函數(shù)關(guān)系式;
②求△OAC的面積;
③求矩形ADEF的邊DE與AD的長(zhǎng);
(2)若矩形ADEF是正方形,求B點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A點(diǎn)的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)是(9,0)以AB為直徑作⊙O′,交y軸負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C作拋物線
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上的一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD求BD直線的解析式;
(3)在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PCD的面積是△BCD面積的
13
,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知P點(diǎn)的坐標(biāo)是(a,b),則sinα等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省如皋市石莊初級(jí)中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖所示,已知A點(diǎn)的坐標(biāo)為(0,3),⊙A的半徑為1,點(diǎn)B在軸上.

①若點(diǎn)B的坐標(biāo)為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關(guān)系;
②能否在軸的正半軸上確定一點(diǎn)B,使⊙B與y軸相切,并且與⊙A相切?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案