如圖,某種新型導(dǎo)彈從地面發(fā)射點L處發(fā)射,在初始豎直加速飛行階段,導(dǎo)彈上升的高度y(km)與飛行時間x(s)之間的關(guān)系式為y=x2x(0≤x≤10).發(fā)射3 s后,導(dǎo)彈到達(dá)A點,此時位于與L同一水面的R處雷達(dá)站測得AR的距離是2 km,再過3 s后,導(dǎo)彈到達(dá)B點.

(1)求發(fā)射點L與雷達(dá)站R之間的距離;
(2)當(dāng)導(dǎo)彈到達(dá)B點時,求雷達(dá)站測得的仰角(即∠BRL)的正切值.
(1)  km    (2)

解:(1)把x=3代入y=x2x,
得y=1,即AL=1
在Rt△ARL中,AR=2,
∴LR=.
(2)把x=3+3=6代入y=x2x,得y=3,即BL=3.
∴tan ∠BRL=.
答:(1)發(fā)射點L與雷達(dá)站R之間的距離為km
(2)雷達(dá)站測得的仰角的正切值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形OABC中,AB∥OC,點A坐標(biāo)為(0,6),點C坐標(biāo)為(3,0),BC=,一拋物線過點A、B、 C.
(1)填空:點B的坐標(biāo)為   ;
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線y1=a(x+2)2-3與交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B、C,則以下結(jié)論:①無論x取何值,y2總是正數(shù);②a=1;③當(dāng)x=0時,y2-y1=4;④2AB=3AC.其中正確的是(    )

A.①②             B.②③           C.③④         D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,-),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A,B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于二次函數(shù)y=2(x+1)(x-3),下列說法正確的是( )
A.圖象的開口向下
B.當(dāng)x>1時,y隨x的增大而減小
C.當(dāng)x<1時,y隨x的增大而減小
D.圖象的對稱軸是直線x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點P(a,2)與點Q(3,b)是拋物線y=x2-2x+c上兩點,且點P、Q關(guān)于此拋物線的對稱軸對稱,則ab的值為(   )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

豎直向上發(fā)射的小球的高度h(m)關(guān)于運(yùn)動時間t(s)的函數(shù)表達(dá)式為h=at2+bt,其圖象如圖所示,若小球在發(fā)射后第2秒與第6秒時的高度相等,則下列時刻中小球的高度最高的是(  )
A.第3秒B.第3.5秒
C.第4.2秒D.第6.5秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知不等式ax2+bx+c<0的解集是(  )
A.-1<x<5B.x>5
C.x<-1且x>5D.x<-1或x>5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=2(x-3)2+1.下列說法:①其圖象的開口向下;②其圖象的對稱軸為直線x=-3;③其圖象頂點坐標(biāo)為(3,-1);④當(dāng)x<3,y隨x的增大而減。畡t其中說法正確的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案