【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BEACAEBD,EOAB交于點(diǎn)F.

(1)求證:四邊形AEBO是矩形.

(2)CD=5,求OE的長.

【答案】(1)證明見解析;(2)EO=5.

【解析】

1)由菱形的性質(zhì)可證明∠BOA=90°,然后再證明四邊形AEBO為平行四邊形,從而可證明四邊形AEBO是矩形;

2)依據(jù)矩形的性質(zhì)可得到EO=BA,然后依據(jù)菱形的性質(zhì)可得到AB=CD

:(1)證明:BEAC,AEBD,

∴四邊形AEBO是平行四邊形.

又∵菱形ABCD對(duì)角線交于點(diǎn)O,

ACBD,即∠AOB=90°,

∴四邊形AEBO是矩形.

(2)∵四邊形AEBO是矩形,

EO=AB,

在菱形ABCD,AB=DC.

EO=DC=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,ABC的頂點(diǎn)A在格點(diǎn)上,B是小正方形邊的中點(diǎn),經(jīng)過點(diǎn)AB的圓的圓心在邊AC上.

)弦AB的長等于_____;

)請用無刻度的直尺,在如圖所示的網(wǎng)格中,找出經(jīng)過出點(diǎn)AB的圓的圓心O,并簡要說明點(diǎn)O的位置是如何找到的(不要求證明)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,EAB的中點(diǎn),將△ADE沿DE翻折得到△FDE,延長EFBCG,FHBC,垂足為H,連接BF、DG.以下結(jié)論:BFED;DFG≌△DCG;FHB∽△EAD;tan∠GEB;SBFG2.6;其中正確的個(gè)數(shù)是( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)探究新知:如圖1,已知的面積相等,試判斷的位置關(guān)系,并說明理由.

2)結(jié)論應(yīng)用:

如圖2,點(diǎn)在反比例函數(shù)的圖像上,過點(diǎn)軸,過點(diǎn)軸,垂足分別為,連接.試證明:.

中的其他條件不變,只改變點(diǎn),的位置如圖3所示,請畫出圖形,判斷的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3分別交 x軸、y軸于點(diǎn)A、C.點(diǎn)P是該直線與雙曲線在第一象限內(nèi)的一個(gè)交點(diǎn),PBx軸于B,SABP=16.

(1)求證:AOC∽△ABP;

2)求點(diǎn)P的坐標(biāo);

3)設(shè)點(diǎn)Q與點(diǎn)P在同一個(gè)反比例函數(shù)的圖象上,且點(diǎn)Q在直線PB的右側(cè),QDx軸于D,當(dāng)BQDAOC相似時(shí),求點(diǎn)Q的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究請補(bǔ)充完整以下探索過程:

1)列表:

x

-5

-4

-3

-2

-1

0

1

2

3

4

y

m

0

-3

-4

-3

0

-3

-4

n

0

直接寫出________,________

2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):

性質(zhì)1______________________________________________________

性質(zhì)2_______________________________________________________

3)若方程有四個(gè)不同的實(shí)數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB于點(diǎn)E

1)如圖①,若CD8,BE2,求⊙O的半徑;

(2)如圖②,點(diǎn)G上一點(diǎn),AG的延長線與DC的延長線交于點(diǎn)F,求證:∠AGD=∠FGC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在邊AC上,CE=BD,連接CD,BE,BECD相交于點(diǎn)F.

(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);

(2)如圖2,若AC=AD,求證:EF=FB;

(3)如圖3,在(2)的條件下,若∠CFE=45°,BCD的面積為4,求線段CD的長.

查看答案和解析>>

同步練習(xí)冊答案