5、已知兩圓的半徑分別為2cm、5cm,兩圓有且只有三條公切線,則它們的圓心距一定(  )
分析:由兩圓有且只有三條公切線,可判斷兩圓的位置關(guān)系為外切,由兩圓的半徑即可求得圓心距.
解答:解:∵兩圓有且只有三條公切線,
∴兩圓的位置關(guān)系為外切,
∴它們的圓心距一定是:2+5=7.
故選D.
點評:本題主要是考查圓與圓的位置關(guān)系與數(shù)量關(guān)系間的聯(lián)系.由兩圓有且只有三條公切線,可判斷兩圓的位置關(guān)系為外切,是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

7、已知兩圓的半徑分別為7和4,當圓心距從11縮小到3時兩圓的位置關(guān)系的變化是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、已知兩圓的半徑分別為3和5,圓心距為4,則兩圓公切線的條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、已知兩圓的半徑分別為3和5,圓心距為d若兩圓有公共點,則d的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知兩圓的半徑分別為2、5,而圓心距是一元二次方程x2-10x+21=0的根,則兩圓位置關(guān)系為( 。

查看答案和解析>>

同步練習冊答案