【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸正半軸,軸于點(diǎn),.

(1)判斷頂點(diǎn)是否在直線上,并說明理由.

(2)如圖1,若二次函數(shù)圖象也經(jīng)過點(diǎn),且,根據(jù)圖象,寫出的取值范圍.

(3)如圖2,點(diǎn)坐標(biāo)為,點(diǎn)內(nèi),若點(diǎn)都在二次函數(shù)圖象上,試比較的大小.

【答案】(1)點(diǎn)在直線上,理由見解析;(2)的取值范圍為.(3)①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),.

【解析】(1)寫出點(diǎn)的坐標(biāo),代入直線進(jìn)行判斷即可.

(2)直線軸交于點(diǎn)為,求出點(diǎn)坐標(biāo),把在拋物線上,代入求得,求出二次函數(shù)表達(dá)式,進(jìn)而求得點(diǎn)A的坐標(biāo),數(shù)形結(jié)合即可求出時(shí),的取值范圍.

(3)直線與直線交于點(diǎn),與軸交于點(diǎn),而直線表達(dá)式為,聯(lián)立方程組,得.點(diǎn),.分三種情況進(jìn)行討論.

【解答】

(1)∵點(diǎn)坐標(biāo)是,

∴把代入,得,

∴點(diǎn)在直線.

2)如圖1,∵直線軸交于點(diǎn)為,∴點(diǎn)坐標(biāo)為.

又∵在拋物線上,

,解得,

∴二次函數(shù)的表達(dá)式為,

∴當(dāng)時(shí),得,,∴.

觀察圖象可得,當(dāng)時(shí),

的取值范圍為.

3)如圖2,∵直線與直線交于點(diǎn),與軸交于點(diǎn),

而直線表達(dá)式為,

解方程組,得.∴點(diǎn).

∵點(diǎn)內(nèi),

.

當(dāng)點(diǎn),關(guān)于拋物線對(duì)稱軸(直線)對(duì)稱時(shí),

,∴.

且二次函數(shù)圖象的開口向下,頂點(diǎn)在直線上,

綜上:①當(dāng)時(shí),;

②當(dāng)時(shí),

③當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACAE,BDBF,1=35°,2=35°,ACBD平行嗎?AEBF平行嗎?

因?yàn)椤?/span>1=35°,2=35°(已知),所以∠1=2.所以______( ).

又因?yàn)?/span>ACAE(已知),所以∠EAC=90°( )

所以∠EAB=EAC+1=125°.

同理可得,FBG=FBD+2=__ °.

所以∠EAB=FBG( ).

所以______(同位角相等,兩直線平行).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

(1)如圖1,在△ABC中,∠B=90,AB=3,BC=4,若△ABC的邊上存在點(diǎn)P,使△ABP是以AB為腰的等腰三角形,則CP的長(zhǎng)為______;

(2)如圖2,在矩形ABCD中,AB=3,邊BC上存在點(diǎn)P,使∠APD=90,求矩形ABCD面積的最小值.

問題解決:

(3)如圖3,在四邊形ABCD中,AB=3,∠A=∠B=90,∠C=45,邊CD上存在點(diǎn)P,使∠APB=60°,在此條件下,四邊形ABCD的面積是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀第①小題的計(jì)算方法,再計(jì)算第②小題.

–5+–9+17+–3

解:原式=[–5+]+[–9+]+17++[–3+]

=[–5+–9+–3+17]+[+++]

=0+–1

=–1

上述這種方法叫做拆項(xiàng)法.靈活運(yùn)用加法的交換律、結(jié)合律可使運(yùn)算簡(jiǎn)便.

②仿照上面的方法計(jì)算:(﹣2000+(﹣1999+4000+(﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小紅玩拋硬幣游戲,連續(xù)拋兩次.小明說:如果兩次都是正面,那么你贏;如果兩次是一正一反,則我贏.”小紅贏的概率是__________,據(jù)此判斷該游戲__________(填公平不公平”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為,.

1)平移,使點(diǎn)移到點(diǎn),畫出平移后的,并寫出點(diǎn)的坐標(biāo).

2)將繞點(diǎn)旋轉(zhuǎn),得到,畫出旋轉(zhuǎn)后的,并寫出點(diǎn)的坐標(biāo).

3)求(2)中的點(diǎn)旋轉(zhuǎn)到點(diǎn)時(shí),點(diǎn)經(jīng)過的路徑長(zhǎng)(結(jié)果保留.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四書五經(jīng)是中國(guó)的圣經(jīng)四書五經(jīng)是《大學(xué)》、《中庸》、《論語(yǔ)》和《孟子》(四書)及《詩(shī)經(jīng)》、《尚書》、《易經(jīng)》、《禮記》、《春秋》(五經(jīng))的總稱,這是一部被中國(guó)人讀了幾千年的教科書,包含了中國(guó)古代的政治理想和治國(guó)之道,是我們了解中國(guó)古代社會(huì)的一把鑰匙,學(xué)校計(jì)劃分階段引導(dǎo)學(xué)生讀這些書,計(jì)劃先購(gòu)買《論語(yǔ)》和《孟子》供學(xué)生使用,已知用500元購(gòu)買《孟子》的數(shù)量和用800元購(gòu)買《論語(yǔ)》的數(shù)量相同,《孟子》的單價(jià)比《論語(yǔ)》的單價(jià)少15.

1)求《論語(yǔ)》和《孟子》這兩種書的單價(jià)各是多少?

2)學(xué)校準(zhǔn)備一次性購(gòu)買這兩種書本,但總費(fèi)用不超過元,那么這所學(xué)校最多購(gòu)買多少本《論語(yǔ)》?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在ABC中,∠ACB=90°,B=30°,AC=1,DAB的中點(diǎn),EFACD 的中位線,四邊形EFGHACD的內(nèi)接矩形(矩形的四個(gè)頂點(diǎn)均在ACD的邊上).

(1)計(jì)算矩形EFGH的面積;

(2)將矩形EFGH沿AB向右平移,F落在BC上時(shí)停止移動(dòng).在平移過程中,當(dāng)矩形與CBD重疊部分的面積為時(shí),求矩形平移的距離;

(3)如圖③,將(2)中矩形平移停止時(shí)所得的矩形記為矩形,將矩形點(diǎn)按順時(shí)針方向旋轉(zhuǎn),當(dāng)落在CD上時(shí)停止轉(zhuǎn)動(dòng),旋轉(zhuǎn)后的矩形記為矩形,設(shè)旋轉(zhuǎn)角為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c,b是最小的正整數(shù),且a,c滿足|a+2|+(c-7)2=0.

(1)填空:a=________,b=________,c=________;

(2)畫出數(shù)軸,并把A,B,C三點(diǎn)表示在數(shù)軸上;

(3)P是數(shù)軸上任意一點(diǎn),點(diǎn)P表示的數(shù)是x,當(dāng)PA+PB+PC=10時(shí),x的值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案