四邊形ABCD是邊長為16的菱形,順次連接它的各邊中點組成四邊形EFGH(四邊形EFGH稱為原四邊形ABCD的中點四邊形),再順次連接四邊形EFGH的各邊中點組成第二個中點四邊形,…,則按上述規(guī)律組成的第八個中點四邊形的周長等于( 。
A、
1
16
B、1
C、4
D、8
分析:根據(jù)題意,結(jié)合圖形尋找規(guī)律:第二、四、六、八個中點四邊形為菱形,第一個菱形邊長為
1
2
,第二個菱形邊長為
1
4
,第三個菱形邊長為
1
8
,第四個菱形邊長為
1
16
解答:精英家教網(wǎng)解:由圖可知,第二、四、六、八個中點四邊形為菱形,
第一個菱形邊長為
1
2
,第二個菱形邊長為
1
4
,第三個菱形邊長為
1
8
,第四個菱形邊長為
1
16

即第八個中點四邊形的邊長等于
1
16

∵四邊形ABCD是邊長為16,
∴周長為64,
∴第八個中點四邊形的周長等于64×
1
16
=4.
故選C.
點評:本題是一道開放性題目,先畫出圖形,根據(jù)圖形所體現(xiàn)的規(guī)律,找出各圖形之間的數(shù)量關(guān)系,便可解答,此題不難,但趣味性強(qiáng),深受同學(xué)們喜愛.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是邊長為1的正方形,四邊形EFGH是邊長為2的正方形,點D與點F重合,點B,D(F),H在同一條直線上,將正方形ABCD沿F?H方向平移至點B與點H重合時停止,設(shè)點D、F之間的距離為x,正方形ABCD與正方形EFGH重疊部分的面積為y,則能大致反映y與x之間函數(shù)關(guān)系的圖象是( 。精英家教網(wǎng)
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求:
(1)對角線AC的長度為
 
cm;
(2)菱形ABCD的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•棗陽市模擬)如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.(1)求點D沿三條圓弧運(yùn)動到點G所經(jīng)過的路線長;(2)判斷線段GB與DF的長度關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,設(shè)四邊形ABCD是邊長為1的正方形,以正方形ABCD的對角線AC為邊作第二個正方形ACEF,再以第二個正方形的對角線AE為邊作第三個正方形AEGH,如此下去…,記正方形ABCD的邊長a1=1,依上述方法所作的正方形的邊長依次為a1,a2,a3,…,an,根據(jù)上述規(guī)律,則第n個正方形的邊長an的表達(dá)式為(  )

查看答案和解析>>

同步練習(xí)冊答案