【題目】為支援困山區(qū),某學(xué)校愛(ài)心活動(dòng)小組準(zhǔn)備用籌集的資金購(gòu)買A、B兩種型號(hào)的學(xué)習(xí)用品.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購(gòu)買B型學(xué)習(xí)用品與用120元購(gòu)買A型學(xué)習(xí)用品的件數(shù)相同.
(1)求A,B兩種學(xué)習(xí)用品的單價(jià)各是多少元;
(2)若購(gòu)買A、B兩種學(xué)習(xí)用品共1000件,且總費(fèi)用不超過(guò)28000元,則最多購(gòu)買B型學(xué)習(xí)用品多少件?
【答案】(1)A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元;(2)最多購(gòu)買B型學(xué)習(xí)用品800件
【解析】
1)設(shè)A型學(xué)習(xí)用品單價(jià)x元,利用“用180元購(gòu)買B型學(xué)習(xí)用品的件數(shù)與用120元購(gòu)買A型學(xué)習(xí)用品的件數(shù)相同”列分式方程求解即可;
(2)設(shè)可以購(gòu)買B型學(xué)習(xí)用品y件,則A型學(xué)習(xí)用品(1000-y)件,根據(jù)這批學(xué)習(xí)用品的錢(qián)不超過(guò)28000元建立不等式求出其解即可.
解:(1)設(shè)A型學(xué)習(xí)用品的單價(jià)為x元,則B型學(xué)習(xí)用品的單價(jià)為(x+10)元,
由題意得=,
解得x=20,
經(jīng)檢驗(yàn)x=20是原分式方程的根,且符合實(shí)際,
則B型學(xué)習(xí)用品單價(jià)為20+10=30(元),
則A型學(xué)習(xí)用品的單價(jià)為20元,B型學(xué)習(xí)用品的單價(jià)為30元;
(2)設(shè)購(gòu)買B型學(xué)習(xí)用品y件,則購(gòu)買A型學(xué)習(xí)用品(1000-y)件,
由題意得20(1000-y)+30y≤28000,
解得y≤800,
則最多購(gòu)買B型學(xué)習(xí)用品800件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1.一元二次方程的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的柑橘,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元;市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以45元的價(jià)格銷售,平均每天銷售105箱;每箱以50元的價(jià)格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價(jià)x(元/箱)之間滿足一次函數(shù)關(guān)系式.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(3)當(dāng)每箱蘋(píng)果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在中,,,是過(guò)點(diǎn)的一條直線,且、在的異側(cè),于,于.
(1)求證:.
(2)若將直線繞點(diǎn)旋轉(zhuǎn)到圖②的位置時(shí)(),其余條件不變,問(wèn)與、的關(guān)系如何?請(qǐng)予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x.
(1)在給定的平面直角坐標(biāo)系中,畫(huà)出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫(xiě)出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向左平移3個(gè)單位,再沿y軸向下平移1個(gè)單位,請(qǐng)直接寫(xiě)出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=6,DC=8,矩形EFGH的三個(gè)頂點(diǎn)E、G、H分別在矩形ABCD的邊ABCD的邊AB、CD、DA上,AH=2,連接CF.當(dāng)△CGF是直角三角形時(shí),線段AE的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高科技創(chuàng)新意識(shí),我市某中學(xué)在“2018年科技節(jié)”活動(dòng)中舉行科技比賽,包括“航模”、“機(jī)器人”、“環(huán)保”、“建模”四個(gè)類別(每個(gè)學(xué)生只能參加一個(gè)類別的比賽),各類別參賽人數(shù)統(tǒng)計(jì)如圖:
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)全體參賽的學(xué)生共有 人,“建模”在扇形統(tǒng)計(jì)圖中的圓心角是 °;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎(jiǎng)的學(xué)生為1名男生和2名女生,獲得“建模”類一等獎(jiǎng)的學(xué)生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎(jiǎng)的學(xué)生中各隨機(jī)選取1名學(xué)生參加市級(jí)“環(huán)保建模”考察活動(dòng),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選取的兩人中恰為1男生1女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)相交于A(1,2),B(n,-1)兩點(diǎn).
(1)求雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<0<x2<x3,請(qǐng)直接寫(xiě)出y1,y2,y3的大小關(guān)系;
(3)觀察圖象,請(qǐng)直接寫(xiě)出不等式kx+b<的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在線段AB上找一點(diǎn)C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2,那么稱線段AB被點(diǎn)C黃金分割.為了增加美感,黃金分割經(jīng)常被應(yīng)用在繪畫(huà)、雕塑、音樂(lè)、建筑等藝術(shù)領(lǐng)域.如圖2,在“附中博識(shí)課程中”,小白菜們沿著紫禁城的中軸線,從內(nèi)金水橋走到了太和殿,領(lǐng)略了古代建筑的宏偉.太和門(mén)位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側(cè),三個(gè)建筑的位置關(guān)系滿足黃金分割.已知太和殿到內(nèi)金水橋的距離約為100丈,設(shè)太和門(mén)到太和殿之間的距離為x丈,要求x,則可列方程為________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com