如圖1,點(diǎn)C將線(xiàn)段AB分成兩部分,如果,那么稱(chēng)點(diǎn)C為線(xiàn)段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線(xiàn)”,類(lèi)似地給出“黃金分割線(xiàn)”的定義:直線(xiàn)l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱(chēng)直線(xiàn)l為該圖形的黃金分割線(xiàn).
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線(xiàn)交AB于點(diǎn)D,請(qǐng)問(wèn)點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請(qǐng)問(wèn)直線(xiàn)CD是不是△ABC的黃金分割線(xiàn),并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對(duì)角線(xiàn)AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問(wèn)直線(xiàn)GH是不是直角梯形ABCD的黃金分割線(xiàn),并證明你的結(jié)論.

【答案】分析:(1)證明AD=CD=BC,證明△BCD∽△BCA,得到,則有,所以點(diǎn)D是AB邊上的黃金分割點(diǎn);
(2)證明S△ACD:S△ABC=S△BCD:S△ACD,直線(xiàn)CD是△ABC的黃金分割線(xiàn);
(3)根據(jù)相似三角形比例線(xiàn)段關(guān)系,證明BG=GC,AH=HD,則梯形ABGH與梯形GCDH上下底分別相等,高也相等,S梯形ABGH=S梯形GCDH=S梯形ABCD,所以GH不是直角梯形ABCD的黃金分割線(xiàn).
解答:解:(1)點(diǎn)D是AB邊上的黃金分割點(diǎn).理由如下:
∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°.
∵CD是角平分線(xiàn),
∴∠ACD=∠BCD=36°,
∴∠A=∠ACD,
∴AD=CD.
∵∠CDB=180°-∠B-∠BCD=72°,
∴∠CDB=∠B,
∴BC=CD.
∴BC=AD.
在△BCD與△BCA中,∠B=∠B,∠BCD=∠A=36°,
∴△BCD∽△BCA,

,
∴點(diǎn)D是AB邊上的黃金分割點(diǎn).

(2)直線(xiàn)CD是△ABC的黃金分割線(xiàn).理由如下:
設(shè)△ABC中,AB邊上的高為h,則S△ABC=AB•h,S△ACD=AD•h,S△BCD=BD•h.
∴S△ACD:S△ABC=AD:AB,S△BCD:S△ACD=BD:AD.
由(1)知,點(diǎn)D是AB邊上的黃金分割點(diǎn),
∴S△ACD:S△ABC=S△BCD:S△ACD,
∴CD是△ABC的黃金分割線(xiàn).

(3)直線(xiàn)不是直角梯形ABCD的黃金分割線(xiàn).理由如下:
∵BC∥AD,
∴△EBG∽△EAH,△EGC∽△EHD,
,
,即 ①
同理,由△BGF∽△DHF,△CGF∽△AHF得:
,即 ②
由①、②得:,
∴AH=HD,
∴BG=GC.
∴梯形ABGH與梯形GCDH上下底分別相等,高也相等,
∴S梯形ABGH=S梯形GCDH=S梯形ABCD
∴GH不是直角梯形ABCD的黃金分割線(xiàn).
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì)、含36°角的等腰三角形、黃金分割、直角梯形等知識(shí)點(diǎn).試題難度不大,理解題中給出的黃金分割點(diǎn)、黃金分割線(xiàn)的概念是正確解題的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線(xiàn)段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱(chēng)點(diǎn)C為線(xiàn)段AB的黃金分割點(diǎn).
(1)某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),類(lèi)似地給出“黃金分割線(xiàn)”的定義:直線(xiàn)l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱(chēng)直線(xiàn)l為該圖形的黃金分割線(xiàn).(如圖2)精英家教網(wǎng)
問(wèn)題.試在圖3的梯形中畫(huà)出至少五條黃金分割線(xiàn),并說(shuō)明理由.
(2)類(lèi)似“黃金分割線(xiàn)”得“黃金分割面”定義:截面a將一個(gè)體積為V的圖形分成體積為V精英家教網(wǎng)1、V2的兩個(gè)圖形,且
V1
V
=
V2
V1
,則稱(chēng)直線(xiàn)a為該圖形的黃金分割面.
問(wèn)題:如圖4,長(zhǎng)方體ABCD-EFGH中,T是線(xiàn)段AB上的黃金分割點(diǎn),證明經(jīng)過(guò)T點(diǎn)且平行于平面BCGF的截面QRST是長(zhǎng)方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線(xiàn)段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱(chēng)點(diǎn)C為線(xiàn)段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線(xiàn)”,類(lèi)似地給出“黃金分割線(xiàn)”的定義:直線(xiàn)l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱(chēng)直線(xiàn)l為該圖形的黃金分割線(xiàn).
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線(xiàn)CD是△ABC的黃金分割線(xiàn).你認(rèn)為對(duì)嗎?為什么?
(2)請(qǐng)你說(shuō)明:三角形的中線(xiàn)是否也是該三角形的黃金分割線(xiàn)?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線(xiàn)交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線(xiàn)DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線(xiàn)EF也是△ABC的黃金分割線(xiàn).請(qǐng)你說(shuō)明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線(xiàn)EF是平行四邊形ABCD的黃金分割線(xiàn).請(qǐng)你畫(huà)一條平行四邊形ABCD的黃金分割線(xiàn),使它不經(jīng)過(guò)平行四邊形ABCD各邊黃金分割點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃石)如圖1,點(diǎn)C將線(xiàn)段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱(chēng)點(diǎn)C為線(xiàn)段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線(xiàn)”,類(lèi)似地給出“黃金分割線(xiàn)”的定義:直線(xiàn)l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱(chēng)直線(xiàn)l為該圖形的黃金分割線(xiàn).
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線(xiàn)交AB于點(diǎn)D,請(qǐng)問(wèn)點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請(qǐng)問(wèn)直線(xiàn)CD是不是△ABC的黃金分割線(xiàn),并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對(duì)角線(xiàn)AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問(wèn)直線(xiàn)GH是不是直角梯形ABCD的黃金分割線(xiàn),并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線(xiàn)段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱(chēng)點(diǎn)C為線(xiàn)段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線(xiàn)”,類(lèi)似地給出“黃金分割線(xiàn)”的定義:直線(xiàn)l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱(chēng)直線(xiàn)l為該圖形的黃金分割線(xiàn).

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線(xiàn)CD是△ABC的黃金分割線(xiàn).你認(rèn)為對(duì)嗎?為什么?
(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線(xiàn)交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線(xiàn)DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線(xiàn)EF也是△ABC的黃金分割線(xiàn).請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分10分)如圖1,點(diǎn)C將線(xiàn)段AB分成兩部分,如果AB : AC=AC : BC,那么稱(chēng)點(diǎn)C為線(xiàn)段的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線(xiàn)”,類(lèi)似地給出“黃金分割線(xiàn)”的定義:直線(xiàn)將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1: S2,如果S : S1= S1: S2,,那么稱(chēng)直線(xiàn)為該圖形的黃金分割線(xiàn).

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線(xiàn)CD是△ABC的黃金分割線(xiàn).你認(rèn)為對(duì)嗎?為什么?

(2)請(qǐng)你說(shuō)明:三角形的中線(xiàn)是否也是該三角形的黃金分割線(xiàn)?

(3)研究小組探究發(fā)現(xiàn):在(1)中,過(guò)點(diǎn)C任作AE交AB于E,再過(guò)點(diǎn)D作,交 AC于點(diǎn)F,連接EF(如圖3),則直線(xiàn)EF是△ABC的黃金分割線(xiàn).請(qǐng)說(shuō)明理由.

(4)如圖4,點(diǎn)E是ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作,交DC于點(diǎn)F,顯然直線(xiàn)EF是ABCD的黃金分割線(xiàn).請(qǐng)你再畫(huà)一條ABCD的黃金分割線(xiàn),使它不經(jīng)過(guò)ABCD各邊黃金分割點(diǎn)(保留必要的輔助線(xiàn)).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案