【題目】如圖3,直線AB、CD相交于O,若∠AOD比∠AOC大40°,則∠BOD=___°;若∠AOD=2∠AOC,則∠BOC=___;若∠AOD=∠AOC,則∠BOD=___.

【答案】 ∠BOD=70° ∠BOC=120° ∠BOD=90°

【解析】①若∠AOD比∠AOC40°,設(shè)∠AOC=x°,則∠AOD=x+40°,x+x+40=180,解得x=70°,所以∠BOD=AOC=70°;②若∠AOD=2AOC,設(shè)∠AOC=x°,則∠AOD=2x°,x+2x=180,解得x=60,所以∠BOC=AOD=120°;③若∠AOD=AOC,所以∠BOD=AOC=90°.

故答案為(1).BOD=70°;(2).BOC=120°;(3).BOD=90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,M是鐵絲AD的中點(diǎn),將該鐵絲首尾相接折成△ABC,且∠B=30°,∠C=100°,如圖2.則下列說法正確的是( )

A. 點(diǎn)MAB

B. 點(diǎn)MBC的中點(diǎn)處

C. 點(diǎn)MBC上,且距點(diǎn)B較近,距點(diǎn)C較遠(yuǎn)

D. 點(diǎn)MBC上,且距點(diǎn)C較近,距點(diǎn)B較遠(yuǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,EDAB,AC上的兩點(diǎn),BD,CE交于點(diǎn)O,且AB=AC,使△ACE≌△ABD,你補(bǔ)充的條件是________

【答案】AD=AECD=BE或∠B=C或∠ADB=AEC

【解析】AD=AECD=BE或∠B=C或∠ADB=AEC;理由如下:

AD=AE

ACEABD中, ,

ACE≌△ABDSAS);

CD=BE

AB=AC,

AD=AE

同理:ACE≌△ABDSAS);

若∠B=C,

ACEABD中, ,

∴△ACE≌△ABDASA);

若∠ADB=AEC,

ACEABD中,

∴△ACE≌△ABDAAS);

故答案為:AD=AECD=BE或∠B=C或∠ADB=AEC

點(diǎn)睛:本題考查了全等三角形的判定方法是開放型題目,存在四種情況,熟練掌握全等三角形的判定方法是解決問題的關(guān)鍵.

型】填空
結(jié)束】
17

【題目】如圖,四邊形ABCD與四邊形A′B′C′D′全等,則∠A′=________,∠A=________,B′C′=________,AD=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的一條直徑,弦CD垂直于AB,垂足為點(diǎn)G、E是劣弧BD上一點(diǎn),點(diǎn)E處的切線與CD的延長線交于點(diǎn)P,連接AE,交CD于點(diǎn)F

1)求證:PE=PF

2)已知AG=4,AF=5,EF=25,求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BE和CF是△ABC的兩條高,∠ABC=48°,∠ACB=76°,則∠FDE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB比AC長2cm,BC的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E,△ACD的周長是14cm,求AB和AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下調(diào)查中,應(yīng)采用全面調(diào)查的是( 。

A.調(diào)查某批次汽車的抗撞擊能力

B.了解全國中學(xué)生的視力和用眼衛(wèi)生情況

C.了解某班學(xué)生的身高情況

D.調(diào)查某池塘中現(xiàn)有魚的數(shù)量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊絮纖維的直徑約為0.000 010 5m,該直徑用科學(xué)記數(shù)法表示為 .

查看答案和解析>>

同步練習(xí)冊答案