【題目】如圖,二次函數(shù)y=x2+bx+c的圖象過點(diǎn)B(0,1)和C(4,3)兩點(diǎn),與x軸交于點(diǎn)D、點(diǎn)E,過點(diǎn)B和點(diǎn)C的直線與x軸交于點(diǎn)A.
(1)求二次函數(shù)的解析式;
(2)在x軸上有一動(dòng)點(diǎn)P,隨著點(diǎn)P的移動(dòng),存在點(diǎn)P使△PBC是直角三角形,請(qǐng)你求出點(diǎn)P的坐標(biāo);
(3)若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),在x軸上沿x軸正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從A點(diǎn)出發(fā),以每秒a個(gè)單位的速度沿射線AC運(yùn)動(dòng),是否存在以A、P、Q為頂點(diǎn)的三角形與△ABD相似?若存在,直接寫出a的值;若不存在,說明理由.
【答案】(1)拋物線解析式y=x2–x+1;(2)點(diǎn)P坐標(biāo)為(1,0),(3,0),(,0),(,0);(3)a=或.
【解析】
(1) 將B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)解析式,通過聯(lián)立方程組可求得b、c的值,進(jìn)而求出函數(shù)解析式;
(2)設(shè)P(x,0),由△PBC是直角三角形,分∠CBP=90°與∠BPC=90°兩種情況討論,運(yùn)用勾股定理可得x的值,進(jìn)而得到P點(diǎn)坐標(biāo);
(3)假設(shè)成立有△APQ∽△ADB或△APQ∽△ABD,則對(duì)應(yīng)邊成比例,可求出a的值.
(1)∵二次函數(shù)y=0.5x2+bx+c的圖象過點(diǎn)B(0,1)和C(4,3)兩點(diǎn),
∴,解得,
∴拋物線解析式y=x2–x+1.
(2)設(shè)點(diǎn)P坐標(biāo)為(x,0).
∵點(diǎn)P(x,0),點(diǎn)B(0,1),點(diǎn)C(4,3),
∴PB==,
CP= =,
BC= =2,
若∠BCP=90°,則BP2=BC2+CP2.
∴x2+1=20+x2–8x+25,∴x=.
若∠CBP=90°,則CP2=BC2+BP2.
∴x2+1+20=x2–8x+25,∴x=.
若∠BPC=90°,則BC2=BP2+CP2.
∴x2+1+x2–8x+25=20,
∴x1=1,x2=3,
綜上所述:點(diǎn)P坐標(biāo)為(1,0),(3,0),(,0),(,0).
(3)a=或.
∵拋物線解析式y=x2–x+1與x軸交于點(diǎn)D,點(diǎn)E,
∴0=x2–x+1,∴x1=1,x2=2,∴點(diǎn)D(1,0).
∵點(diǎn)B(0,1),C(4,3),
∴直線BC解析式y=x+1.
當(dāng)y=0時(shí),x=–2,∴點(diǎn)A(–2,0).
∵點(diǎn)A(–2,0),點(diǎn)B(0,1),點(diǎn)D(1,0),
∴AD=3,AB=.
設(shè)經(jīng)過t秒,∴AP=2t,AQ=at,
若△APQ∽△ADB,
∴,即,∴a=,
若△APQ∽△ABD,∴,即,∴a=.
綜上所述:a=或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AB=5,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M,N分別是AD,AB上的動(dòng)點(diǎn),則BM+MN的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至矩形AEFG,點(diǎn)D的旋轉(zhuǎn)路徑為,若AB=2,BC=4,則陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元,若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問:
(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨(dú)完成需12天,乙單獨(dú)完成需24天,單獨(dú)請(qǐng)哪個(gè)組,商店所需費(fèi)用最少?
(3)若裝修完后,商店每天可贏利200元,你認(rèn)為如何安排施工更有利于商店?請(qǐng)你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽. 并從參加比賽的學(xué)生中隨機(jī)抽取部分學(xué)生的演講成績(jī)進(jìn)行統(tǒng)計(jì)(等級(jí):A:優(yōu)秀,B:良好,C:一般,D:較差),并制作了如下統(tǒng)計(jì)圖表(部分信息未給出):
等級(jí) | 人數(shù) |
A | m |
B | 20 |
C | n |
D | 10 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息解答下列問題:
(1)這次共抽取了________名參加演講比賽的學(xué)生,統(tǒng)計(jì)圖中a=________,b=________;
(2)若該校學(xué)生共有2000人,如果都參加了演講比賽,請(qǐng)你估計(jì)成績(jī)達(dá)到優(yōu)秀的有多少人?
(3)若演講比賽成績(jī)?yōu)?/span>A等級(jí)的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從A等級(jí)的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,求抽中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2.
(2)求點(diǎn)C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為________;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為1200×=108”,請(qǐng)你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;
④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com