【題目】小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)
【答案】
(1)解:由題意,得:w=(x﹣20)y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)
(2)解:對(duì)于函數(shù)w=﹣10x2+700x﹣10000的圖象的對(duì)稱軸是直線 .
又∵a=﹣10<0,拋物線開口向下.∴當(dāng)20≤x≤32時(shí),W隨著X的增大而增大,
∴當(dāng)x=32時(shí),W=2160
答:當(dāng)銷售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元
(3)解:取W=2000得,﹣10x2+700x﹣10000=2000
解這個(gè)方程得:x1=30,x2=40.
∵a=﹣10<0,拋物線開口向下.
∴當(dāng)30≤x≤40時(shí),w≥2000.
∵20≤x≤32
∴當(dāng)30≤x≤32時(shí),w≥2000.
設(shè)每月的成本為P(元),由題意,得:P=20(﹣10x+500)=﹣200x+10000
∵k=﹣200<0,
∴P隨x的增大而減。
∴當(dāng)x=32時(shí),P的值最小,P最小值=3600.
答:想要每月獲得的利潤(rùn)不低于2000元,小明每月的成本最少為3600元
【解析】(1)由題意得,每月銷售量與銷售單價(jià)之間的關(guān)系可近似看作一次函數(shù),利潤(rùn)=(定價(jià)﹣進(jìn)價(jià))×銷售量,從而列出關(guān)系式;(2)首先確定二次函數(shù)的對(duì)稱軸,然后根據(jù)其增減性確定最大利潤(rùn)即可;(3)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生分兩組參加某項(xiàng)活動(dòng),甲組有26人,乙組有32人,后來由于活動(dòng)需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?
【答案】7個(gè)人
【解析】
試題設(shè)從甲組抽調(diào)了個(gè)學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.
試題解析:設(shè)從甲組抽出人到乙組,
答:從甲組抽調(diào)了7名學(xué)生去乙組
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線AB和CD交于點(diǎn)O,OE⊥AB,垂足為點(diǎn)O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC與∠COE的度數(shù);
(2)求∠BOP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:
5(3x-1)=2(4x+2)-1①,
15x-5=8x+4-1②,
15x-8x=4-1+5③
7x④,
x=⑤
老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯(cuò)誤,請(qǐng)指出他的錯(cuò)步及錯(cuò)誤原因: ,方程的正確的解是x= .
然后,你自己細(xì)心的解下面的方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長(zhǎng)線上的點(diǎn),連結(jié)EF,分別交AD、BC于點(diǎn)G、H.若∠1=∠2,∠A=∠C,試說明AD//BC和AB//CD.請(qǐng)完成下面的推理過程,填寫理由或數(shù)學(xué)式:
∵∠1=∠2,∠1=∠AGH(_________)
∴∠2=∠AGH(________)
∴AD//BC(________)
∴∠ADE=∠C(________)
∵∠A=∠C(已知)
∴∠ADE=_______(等量代換)
∴AB//CD(_______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標(biāo)準(zhǔn)質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量10kg的用負(fù)數(shù)表示,結(jié)果記錄如下
與標(biāo)準(zhǔn)質(zhì)量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(shù)(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質(zhì)量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且S△ADE= S四邊形BEDC , 則∠A=( )
A.75°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,過點(diǎn)C作CD⊥CB交∠CBA的外角平分線于點(diǎn)D,連接AD,過點(diǎn)C作∠BCE=∠BAD,交AB的延長(zhǎng)線于點(diǎn)E.若CD=3,則CE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在AB上,AD=AC,AF⊥CD交CD于點(diǎn)E,交CB于點(diǎn)F,則CF的長(zhǎng)是________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com