【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象l與y軸交于點(diǎn)A(0 , 2),與一次函數(shù)y=x﹣3的圖象l交于點(diǎn)E(m ,﹣5).
(1)m=__________;
(2)直線l與x軸交于點(diǎn)B,直線l與y軸交于點(diǎn)C,求四邊形OBEC的面積;
(3)如圖2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的邊PQ在x軸上平移,若矩形MNPQ與直線l或l有交點(diǎn),直接寫出a的取值范圍_____________________________
【答案】(1)-2;(2);(3)≤a≤或3≤a≤6.
【解析】
(1)根據(jù)點(diǎn)E在一次函數(shù)圖象上,可求出m的值;
(2)利用待定系數(shù)法即可求出直線l1的函數(shù)解析式,得出點(diǎn)B、C的坐標(biāo),利用S四邊形OBEC=S△OBE+S△OCE即可得解;
(3)分別求出矩形MNPQ在平移過程中,當(dāng)點(diǎn)Q在l1上、點(diǎn)N在l1上、點(diǎn)Q在l2上、點(diǎn)N在l2上時a的值,即可得解.
解:(1)∵點(diǎn)E(m,5)在一次函數(shù)y=x3圖象上,
∴m3=5,
∴m=2;
(2)設(shè)直線l1的表達(dá)式為y=kx+b(k≠0),
∵直線l1過點(diǎn)A(0,2)和E(2,5),
∴ ,解得,
∴直線l1的表達(dá)式為y=x+2,
當(dāng)y=x+2=0時,x=
∴B點(diǎn)坐標(biāo)為(,0),C點(diǎn)坐標(biāo)為(0,3),
∴S四邊形OBEC=S△OBE+S△OCE=××5+×2×3=;
(3)當(dāng)矩形MNPQ的頂點(diǎn)Q在l1上時,a的值為;
矩形MNPQ向右平移,當(dāng)點(diǎn)N在l1上時,x+2=1,解得x=,即點(diǎn)N(,1),
∴a
矩形MNPQ繼續(xù)向右平移,當(dāng)點(diǎn)Q在l2上時,a的值為3,
矩形MNPQ繼續(xù)向右平移,當(dāng)點(diǎn)N在l2上時,x3=1,解得x=4,即點(diǎn)N(4,1),
∴a的值為4+2=6,
綜上所述,當(dāng)≤a≤或3≤a≤6時,矩形MNPQ與直線l1或l2有交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣x+a﹣1=0.
(1)當(dāng)a=﹣11時,解這個方程;
(2)若這個方程有兩個實(shí)數(shù)根x1,x2,求a的取值范圍;
(3)若方程兩個實(shí)數(shù)根x1,x2滿足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市舉行“第十七屆中小學(xué)生書法大賽”作品比賽,已知每幅參賽作品成績記為,組委會從1000幅書法作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制成如下統(tǒng)計圖表.
分?jǐn)?shù)段 | 頻數(shù) | 百分比 |
38 | 0.38 | |
______ | 0.32 | |
______ | ______ | |
10 | 0.1 | |
合計 | ______ | 1 |
根據(jù)上述信息,解答下列問題:
(1)請你把表中的數(shù)據(jù)填寫完整.
(2)補(bǔ)全書法作品比賽成績頻數(shù)直方圖.
(3)若80分(含80分)以上的書法作品將被評為等級獎,試估計全市獲得等級獎的幅數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BC=16cm,現(xiàn)點(diǎn)P從點(diǎn)B出發(fā),沿BC向C點(diǎn)運(yùn)動,運(yùn)動速度為m/s,若點(diǎn)P的運(yùn)動時間為t秒,則當(dāng)△ABP是直角三角形時,時間t的值可能是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)C表示數(shù)c,且.我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫字母一起標(biāo)記.
比如,點(diǎn)A與點(diǎn)B之間的距離記作AB.
(1)求AC的值;
(2)若數(shù)軸上有一動點(diǎn)D滿足CD+AD=36,直接寫出D點(diǎn)表示的數(shù);
(3)動點(diǎn)B從數(shù)1對應(yīng)的點(diǎn)開始向右運(yùn)動,速度為每秒1個單位長度,同時點(diǎn)A,C在數(shù)軸上運(yùn)動,點(diǎn)A、C的速度分別為每秒 3個單位長度,每秒4個單位長度,運(yùn)動時間為t秒.
①若點(diǎn)A向右運(yùn)動,點(diǎn)C向左運(yùn)動,AB=BC,求t的值.
②若點(diǎn)A向左運(yùn)動,點(diǎn)C向右運(yùn)動,2AB-m×BC的值不隨時間t的變化而改變,請求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線AB分別與x軸、y軸交于B、A兩點(diǎn),OA、OB的長是關(guān)于x的一元二次方程x2﹣12x+32=0的兩個實(shí)數(shù)根,且OB>OA,以OA為一邊作如圖所示的正方形AOCD,CD交AB于點(diǎn)P.
(1)求直線AB的解析式;
(2)在x軸上是否存在一點(diǎn)Q,使以P、C、Q為頂點(diǎn)的三角形與△ADP相似?若存在,求點(diǎn)Q坐標(biāo);否則,說明理由;
(3)設(shè)N是平面內(nèi)一動點(diǎn),在y軸上是否存在點(diǎn)M,使得以A、C、M、N為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)M的坐標(biāo);否則,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在網(wǎng)絡(luò)時代里,每年網(wǎng)絡(luò)上都會出現(xiàn)很多紅極一時的網(wǎng)絡(luò)流行語,為了解同學(xué)們對網(wǎng)絡(luò)流行語的使用情況,某數(shù)學(xué)興趣小組選取了其中的 A:“藍(lán)瘦香菇”,B:“洪荒之力”,C:“老司機(jī)”,D:“套路”四個網(wǎng)絡(luò)流行語在全校3000名學(xué)生中進(jìn)行了抽樣調(diào)查,要求每位被調(diào)查學(xué)生只能從中選擇一個自己用得最多的網(wǎng)絡(luò)流行語.根據(jù)調(diào)查結(jié)果,該小組繪制了如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息,請補(bǔ)全條形統(tǒng)計圖并估計該校學(xué)生用得最多的網(wǎng)絡(luò)流行語.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)要證明命題“平行四邊形的對邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,
(1)補(bǔ)全求證部分;
(2)請你寫出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com