【題目】如圖,AB是⊙O的直徑,⊙O交BC的中點于D,DE⊥AC于E,連接AD,則下列結(jié)論:
①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切線,正確的個數(shù)是( )
A.1 個 B.2個 C.3 個 D.4個
【答案】D
【解析】
試題分析:根據(jù)直徑所對的圓周角是直角推出∠ADB即可判斷①;求出OD∥AC,推出DE⊥OD,得出DE是圓O的切線即可判斷④;根據(jù)線段垂直平分線推出AC=AB,即可判斷③,根據(jù)切線的性質(zhì)即可判斷②.
解:∵AB是⊙O的直徑,
∴∠ADB=90°=∠ADC,
即AD⊥BC,①正確;
連接OD,
∵D為BC中點,
∴BD=DC,
∵OA=OB,
∴DO∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵OD是半徑,
∴DE是⊙O的切線,∴④正確;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴②正確;
∵D為BC中點,AD⊥BC,
∴AC=AB,
∵OA=OB=AB,
∴OA=AC,∴③正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面設(shè)計的原理不是利用三角形穩(wěn)定性的是( )
A. 三角形的房架 B. 自行車的三角形車架
C. 斜釘一根木條的長方形窗框 D. 由四邊形組成的伸縮門
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本1.4有這樣一道例題:
問題4:用一根長22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學(xué)提出問題:“用這根長22cm的鐵絲能否圍成面積最大的矩形?若能圍成,求出面積最大值;若不能圍成,請說明理由.”請你完成該同學(xué)提出的問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測得河的寬度,他們是這樣做的:
①在河流的一條岸邊B點,選對岸正對的一棵樹A;
②沿河岸直走20m有一樹C,繼續(xù)前行20m到達D處;
③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_A樹正好被C樹遮擋住的E處停止行走;
④測得DE的長為5米.
求:(1)河的寬度是多少米?
(2)請你證明他們做法的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點A開始沿AC向點C以2厘米/秒的速度運動;與此同時,點Q從點C開始沿CB邊向點B以1厘米/秒的速度運動;如果P、Q分別從A、C同時出發(fā),當(dāng)其中一點到達終點時,另一點也隨之停止運動.
(1)經(jīng)過幾秒,△CPQ的面積等于3cm2?
(2)在整個運動過程中,是否存在某一時刻t,使PQ恰好平分△ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張直角三角形的紙片ABC,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且AC與AE重合,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】森林是地球之肺,每年能為人類提供大約28.3億噸的有機物.28.3億噸用科學(xué)記數(shù)法表示為( )
A.28.3×107 B.2.83×108
C.0.283×1010 D.2.83×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算中,正確的是( )
A.4a﹣3a=1 B.a(chǎn)a2=a3
C.3a6÷a3=3a2 D.(ab2)2=a2b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知1cm3的氫氣重約為0.00009g,用科學(xué)記數(shù)法表示1cm3的氫氣質(zhì)量____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com