【題目】如圖,DBAC,且DB=ACEAC的中點(diǎn).

1)求證:四邊形BDEC是平行四邊形;

2)連接AD、BE,△ABC添加一個(gè)條件: ,使四邊形DBEA是矩形(不需說(shuō)明理由).

【答案】1)見(jiàn)解析;(2AB=BC.

【解析】

1)證明DB=ECDBEC即可;

2)矩形的判定方法有多種,可選擇利用“對(duì)角線相等的平行四邊形為矩形”來(lái)解決.

1)證明:∵EAC中點(diǎn),

EC=AC

DB=AC,

DB=EC

又∵DBEC,

∴四邊形DBCE是平行四邊形.

2)如圖,連接AD,BE

添加AB=BC

理由:∵DBAE,DB=AE,

∴四邊形DBEA是平行四邊形.

BC=DEAB=BC,

AB=DE

ADBE是矩形.

故答案為:AB=BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為獎(jiǎng)勵(lì)學(xué)習(xí)之星,準(zhǔn)備在某商店購(gòu)買A、B兩種文具作為獎(jiǎng)品,已知一件A種文具的價(jià)格比一件B種文具的價(jià)格便宜5元,且用600元買A種文具的件數(shù)是用400元買B種文具的件數(shù)的2倍.

1)求一件A種文具的價(jià)格;

2)根據(jù)需要,該校準(zhǔn)備在該商店購(gòu)買A、B兩種文具共150件.

①求購(gòu)買AB兩種文具所需經(jīng)費(fèi)W與購(gòu)買A種文具的件數(shù)a之間的函數(shù)關(guān)系式;

②若購(gòu)買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計(jì)劃經(jīng)費(fèi)不超過(guò)2750元,求有幾種購(gòu)買方案,并找出經(jīng)費(fèi)最少的方案,及最少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知:點(diǎn)A和點(diǎn)B(如圖1),根據(jù)條件畫(huà)圖(用三角板和量角器):

①畫(huà)射線BA;

②畫(huà)∠ABC90°,使得點(diǎn)C在線段AB上方且ABBC;

③連接AC,畫(huà)出∠ABC的角平分線BD,交ACD.通過(guò)觀察、度量、猜想獲得線段BDAC的關(guān)系.

2)已知:如圖2,∠AOB150,OC平分∠AOB,AODO,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將口ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.

(1)求證:△ABF≌△ECF

(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,∠ABC=90°,ADBCAECDBCE,∠BAE=∠EAC,OAC的中點(diǎn),AD=DC=2,下面結(jié)論:①AC=2AB;②AB=;③SADC=2SABE;④BOAE,其中正確的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)A0,3)的一次函數(shù)y1=kx+bk0)的圖象與正比例函數(shù)y2=2x的圖象相交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)是1

1)求點(diǎn)B的坐標(biāo)及k、b的值;

2)若該一次函數(shù)的圖象與x軸交于D點(diǎn),求△BOD的面積

3)當(dāng)y1y2時(shí),自變量x的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系(如圖),直線的經(jīng)過(guò)點(diǎn)和點(diǎn).

(1)求的值;

(2)如果拋物線經(jīng)過(guò)點(diǎn)、,該拋物線的頂點(diǎn)為點(diǎn),求的值;

(3)設(shè)點(diǎn)在直線上,且在第一象限內(nèi),直線軸的交點(diǎn)為點(diǎn),如果,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)Ay軸的正半軸上,點(diǎn)Cx軸的正半軸上,線段OA,OC的長(zhǎng)分別是m,n且滿足(m-6)2+0,點(diǎn)D是線段OC上一點(diǎn),將△AOD沿直線AD翻折,點(diǎn)O落在矩形對(duì)角線AC上的點(diǎn)E

1)求線段OD的長(zhǎng)

2)求點(diǎn)E的坐標(biāo)

3DE所在直線與AB相交于點(diǎn)M,點(diǎn)Nx軸的正半軸上,以MA、N、C為頂點(diǎn)的四邊形是平行四邊形時(shí),求N點(diǎn)坐

查看答案和解析>>

同步練習(xí)冊(cè)答案