【題目】某區(qū)在實施居民用水管理前,隨機調(diào)查了部分家庭(單位:戶)去年的月均用水量(單位:t),并將調(diào)查數(shù)據(jù)進行整理,繪制出如下不完整的統(tǒng)計圖表:

請解答以下問題:

(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

(2)若該小區(qū)有2000戶家庭,根據(jù)此次隨機抽查的數(shù)據(jù)估計,該小區(qū)月均用水量不低于20t的家庭有多少戶?

(3)為了鼓勵節(jié)約用水,要確定一個月均用水量的標(biāo)準(zhǔn),超出該標(biāo)準(zhǔn)的部分按1.5倍價格收費,若要使68%的家庭水費支出不受影響,那么,你覺得家庭月均用水量應(yīng)定為多少?

【答案】(1)見解析;(2)240戶;(3)15t.

【解析】

(1)根據(jù)月用水量在0≤x<5范圍的頻數(shù)與百分比可得調(diào)查的總戶數(shù),從而可求得用水量在10≤x<15的頻數(shù)以及20≤x<25的頻率,據(jù)此補全圖、表即可;

(2)用2000乘以月少水量不低于20t的家庭所占的比例即可;

(3)根據(jù)各分組的百分比進行判斷即可得.

(1)∵被調(diào)查的總數(shù)量為6÷12%=50(戶),

10≤x<15的頻數(shù)為50×32%=16(戶)、20≤x<25的頻率為4÷50=0.08=8%,

補全圖形如下:

月均用水量

頻數(shù)

百分比

0≤x<5

6

 12%

5≤x<10

12

 24%

10≤x<15

16

 32%

15≤x<20

10

 20%

20≤x<25

4

8%

25≤x<30

2

 4%

合計

50

100%

(2)估計該小區(qū)月均用水量不低于20t的家庭有2000×(8%+4%)=240

(3)∵前三個分組的頻率之和為12%+24%+32%=68%,

∴家庭月均用水量應(yīng)定為15t.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖和圖,請根據(jù)相關(guān)信息,解答下列問題:

)圖1中a的值為

)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)這組初賽成績,由高到低確定9人進入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復(fù)賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.

AB兩種品牌的化妝品每套進價分別為多少元?

若銷售1A品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進B品牌化妝品的數(shù)量比購進A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在你標(biāo)有刻度的直線l上,從點A開始,以AB=1為直徑畫半圓,記為第1個半圓;以BC=2為直徑畫半圓,記為第2個半圓;以CD=4為直徑畫半圓,記為第3個半圓;以DE=8為直徑畫半圓,記為第4個半圓…,按此規(guī)律,則第4個半圓的面積是第3個半圓面積的倍,第n個半圓的面積為 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的中線BD、CE相交于點O、M、N分別為OB、OC的中點.

(1)求證:MD和NE互相平分;

(2)若BD⊥AC,EM=2,OD+CD=7,求△OCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A、B兩種花草每棵的價格分別是多少元?
(2)若購買A、B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)y= (x﹣6)2+3的圖象,下列敘述錯誤的是(
A.圖象是拋物線,開口向上
B.對稱軸為直線x=6
C.頂點是圖象的最高點,坐標(biāo)為(6,3)
D.當(dāng)x<6時,y隨x的增大而減;當(dāng)x>6時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處,已知BC=10厘米,AB=8厘米,

(1)求BFFC的長;

(2)求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡÷,然后再從-2x≤2的范圍內(nèi)選取一個合適的x的整數(shù)值代入求值

【答案】4.

【解析】試題分析:先將原分式進行化解,化解過程中注意不為0的量,根據(jù)不為0的量結(jié)合x的取值范圍得出合適的x的值,將其代入化簡后的代數(shù)式中即可得出結(jié)論.

試題解析:原式===

其中,即x≠﹣10、1

∵﹣2x≤2x為整數(shù),∴x=2

x=2代入中得: ==4

考點:分式的化簡求值.

型】解答
結(jié)束】
21

【題目】解方程:

查看答案和解析>>

同步練習(xí)冊答案