如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,D為⊙O2上一點(diǎn),過點(diǎn)D作⊙O2的切線交⊙O1于F、E,連接AF,AE,分別交⊙O2于B,C,連接BC,AD,BC與AD相交于點(diǎn)P,延長AD交⊙O1于Q.
(1)求證:BCEF;
(2)求證:FD•PC=AP•DQ.
證明:(1)如圖過兩圓的公切線MN,
∵∠NAC=∠ABC=∠AFD,
∴BCEF.

(2)連接FQ,
∵BCEF,
∴∠ACP=∠AED,
∵∠AED=∠AQF,∠AQF=∠ACP,
又∵∠EAP=∠DFQ,
∴△APC△FDQ.
∴FD•PC=AP•DQ.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的半徑為R,⊙P的半徑為r(r<R),且⊙P的圓心P在⊙O上.設(shè)C是⊙P上一點(diǎn),過點(diǎn)C與⊙P相切的直線交⊙O于A、B兩點(diǎn).
(1)若點(diǎn)C在線段OP上,(如圖1).求證:PA•PB=2Rr;
(2)若點(diǎn)C不在線段OP上,但在⊙O內(nèi)部如圖(2).此時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,說明理由;
(3)若點(diǎn)C在⊙O的外部,如圖(3).此時(shí),PA•PB與R,r的關(guān)系又如何?請(qǐng)直接寫出,不要求給予證明或說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為3cm的⊙O1與半徑為5cm的⊙O2相內(nèi)切,則兩個(gè)圓的圓心之間的距離O1O2=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O1與⊙O2內(nèi)切于P點(diǎn),過P點(diǎn)作直線交⊙O1于A點(diǎn),交⊙O2于B點(diǎn),C為⊙O1上一點(diǎn),過B點(diǎn)作⊙O2的切線交直線AC于Q點(diǎn).
(1)求證:AC•AQ=AP•AB;
(2)若將兩圓內(nèi)切改為外切,其它條件不變,(1)中結(jié)論是否仍然成立?______請(qǐng)你畫出圖形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

邊長為1的正三角形ABC的中心O,以O(shè)為圓心,在正三角形內(nèi)畫一個(gè)圓,(⊙O),再作⊙O1,⊙O2,⊙O3,分別與正三角形的兩邊及⊙O都相切,試求,這四個(gè)面積總和的最大值與最小值,并指出面積總和取最值時(shí)對(duì)應(yīng)的⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知這是從正方形材料上剪裁下一個(gè)最大的圓形后剩下的邊角廢料中的一塊,其中AO⊥OB,并且AO=BO,當(dāng)AO=1時(shí),求在此圖形中可裁剪出的最大的圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形給我們很多圓的形象,其中兩圓沒有的位置關(guān)系是( 。
A.外離B.內(nèi)含C.相交D.相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,以正六邊形的頂點(diǎn)為圓心,2cm為半徑的六個(gè)圓中,相鄰兩圓外切,在正六邊形內(nèi)部的陰影部分能畫出最大圓的半徑等于( 。
A.2cmB.3cmC.4cmD.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

宏遠(yuǎn)廣告公司要為某企業(yè)的一種產(chǎn)品設(shè)計(jì)商標(biāo)圖案,給出了如下幾種初步方案,供繼續(xù)設(shè)計(jì)選用(設(shè)圖中圓的半徑均為r)
(1)如圖1,分別以線段O1O2的兩個(gè)端點(diǎn)為圓心,以這條線段的長為半徑作出兩個(gè)互相交錯(cuò)的圓的圖案,試求兩圓相交部分的面積;
(2)如圖2,分別以等邊△O1O2O3的三個(gè)頂點(diǎn)為圓心,以其邊長為半徑,作出三個(gè)兩兩相交的相同的圓,這時(shí),這三個(gè)圓相交部分的面積又是多少呢?
(3)如圖3,分別以正方形O1O2O3O4的四個(gè)頂點(diǎn)為圓心,以其邊長為半徑,作出四個(gè)相同的圓,這時(shí),這四個(gè)圓相交部分的面積又是多少呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案