如圖,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連接AE、BE.已知tan∠CBE=數(shù)學公式,A(3,0),D(-1,0),E(0,3).
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究在拋物線上是否存在一點P,使以D、E、A、P為頂點的四邊形是梯形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

解:(1)設拋物線解析式為y=ax2+bx+c
將A(3,0),D(-1,0),E(0,3)代入上式,得
,
解得:a=-1,b=2,c=3,
∴拋物線的解析式為y=-x2+2x+3.
又∵y=-x2+2x+3=-(x-1)2+4,
∴點B(1,4);

(2)證明:如圖1,過點B作BM⊥y于點M,則M(0,4).
在Rt△AOE中,
∵OA=OE=3,
∴∠1=∠2=45°,AE===3
在Rt△EMB中,EM=OM-OE=1=BM,
∴∠MEB=∠MBE=45°,BE==
∴∠BEA=180°-∠1-∠MEB=90°.
∴AB是△ABE外接圓的直徑.
在Rt△ABE中,tan∠BAE===tan∠CBE,
∴∠BAE=∠CBE.
在Rt△ABE中,∠BAE+∠3=90°,
∴∠CBE+∠3=90°.
∴∠CBA=90°,即CB⊥AB.
∴CB是△ABE外接圓的切線;

(3)存在.
當EP∥AD時,
∵E(0,3),
∴直線EP的解析式為y=3,
,解得;
當AE∥DP時,
設直線AE的解析式為y=kx+b(k≠0),
∵A(3,0),E(0,3),
,解得,
∴直線AE的解析式為y=-x+3,
設直線DP的解析式為y=-x+b,
∵D(-1,0),
∴1+b=0,解得b=-1,
∴直線DP的解析式為y=-x-1,
,解得(舍去),
∴P(4,-5);
當DE∥AP時,
設直線DE的解析式為y=kx+b(k≠0),
∵D(-1,0),E(0,3),
,解得,
∴直線DE的解析式為y=3x+3,
設直線AP的解析式為y=3x+b,
∵A(3,0),
∴9+b=0,解得b=-9,
∴直線AP的解析式為y=3x-9,
,解得(舍去).
綜上所述,點P的坐標為(2,3)或(4,-5)或(-4,-5).
分析:(1)設拋物線解析式為y=ax2+bx+c將A(3,0),D(-1,0),E(0,3)代入即可得出a,b,c的值,進而得出拋物線的解析式;
(2)過點B作BM⊥y于點M,則M(0,4).在Rt△AOE中,因為OA=OE=3,所以∠1=∠2=45°,再根據(jù)勾股定理即可求出AE的長,同理可得出BE的長,
(3)由于梯形的兩底邊不能確定,故應分EP∥AD,AE∥DP,DE∥AP三種情況進行分類討論.
點評:本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求二次函數(shù)及一次函數(shù)的解析式,兩直線平行的相關知識,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標;
(2)在(1)的條件下,設△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標,若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是( 。
(1)直線OA的函數(shù)解析式為y=
4
3
x
;
(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標為(S-5,4)
(4)若點P在線段BC上時,P點的坐標為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案