【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,O為對角線AC、BD的交點,且∠CAE=15° .
(1)求證:△AOB為等邊三角形;
(2)求∠BOE度數(shù).
【答案】(1)見解析;(2)75°
【解析】試題分析:(1)因為四邊形ABCD是矩形,所以OA=OB,則只需求得∠BAC=60°,即可證明三角形是等邊三角形;
(2)因為∠B=90°,∠BAE=45°,所以AB=BE,又因為△ABO是等邊三角形,則∠OBE=30°,故∠BOE度數(shù)可求.
(1)證明:∵四邊形ABCD是矩形
∴∠BAD=∠ABC=90°,AO=BO=AC=BD
∵AE是∠BAD的角平分線;
∴∠BAE=45°
∵∠CAE=15°
∴∠BAC=60°
∴△AOB是等邊三角形;
(2)解:∵在Rt△ABE中,∠BAE=45°
∴AB=BE
∵△ABO是等邊三角形
∴AB=BO
∴OB=BE
∵∠OBE=30°,OB=BE,
∴∠BOE=(180°﹣30°)=75°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的直徑.
(1)如圖1,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數(shù)是 ,∠B2的度數(shù)是 ;
(2)如圖2,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,則∠B3的度數(shù)是 ;
(3)如圖3,垂直于AD的n條弦B1C1,B2C2,B3 C3,…,BnCn把圓周2n等分,則∠Bn的度數(shù)是 (用含n的代數(shù)式表示∠Bn的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|,﹣|0|中,負數(shù)的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式.
(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com