探索研究:
通過(guò)對(duì)一次函數(shù)、反比例函數(shù)的學(xué)習(xí).我們積累了一定的經(jīng)驗(yàn).下面我們借鑒以往研究函效的經(jīng)驗(yàn),探索的數(shù)y=x+數(shù)學(xué)公式(x>0)的圖象和性質(zhì).
(1)填寫下表,畫出函數(shù)的圖象:
x數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式1234
y
(2)觀察圖象,寫出函數(shù)兩條不同類型的性質(zhì):
①________;
②________.
知識(shí)運(yùn)用:
一般函數(shù)y=x+數(shù)學(xué)公式(x>0,a>0)也有類似的結(jié)論.請(qǐng)利用上面探究函數(shù)性質(zhì)的方法解決下列問(wèn)題:
己知一個(gè)矩形的面積是4.設(shè)矩形的一邊長(zhǎng)為x.它的周長(zhǎng)為y.求y與x的函數(shù)關(guān)系式,井求出:當(dāng)x取何值時(shí).矩形的周長(zhǎng)最小?最小值是多少?

解:(1)填表如下:
x1234
y2
(函數(shù)y=x+的圖象如圖:

(2)①答:函數(shù)兩條不同類型的性質(zhì)是:當(dāng)0<x<1時(shí),y 隨x的增大而減小,當(dāng)x>1時(shí),y 隨x的增大而增大;②當(dāng)x=1時(shí),函數(shù)y=x+(x>0)的最小值是2.
知識(shí)運(yùn)用:∵設(shè)矩形的一邊長(zhǎng)為x.它的周長(zhǎng)為y.
∴矩形的另一邊為,
∵矩形的面積是4,
•x=4
∴y=2x+
=2(x+
=2[(2+-2+2]
=2(-2+4
∴當(dāng)=時(shí),即x=時(shí),周長(zhǎng)有最小值4
分析:(1)把x的值代入解析式計(jì)算即可;
(2)根據(jù)圖象所反映的特點(diǎn)寫出即可;
(3)根據(jù)完全平方公式(a+b)2=a2+2ab+b2,進(jìn)行配方成y=2(-2+4即可求出答案.
點(diǎn)評(píng):本題是一道二次函數(shù)的綜合試題,考查了描點(diǎn)法畫函數(shù)的圖象的方法,二次函數(shù)最值的運(yùn)用.反比例函數(shù)的圖象性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:湖南省中考真題 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式;
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值;
II.如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q,問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年河北省唐山市古冶區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年河北省承德三中中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案