已知⊙O的半徑為12cm,弦AB=16cm.
(1)求圓心O到弦AB的距離;
(2)如果弦AB的長(zhǎng)度保持不變,兩個(gè)端點(diǎn)在圓周上滑動(dòng),那么弦AB的中點(diǎn)形成什么樣的圖形?
(1)圓心O到弦AB的距離是cm;
(2)弦AB的中點(diǎn)形成一個(gè)以O(shè)為圓心,以cm為半徑的圓周.

試題分析:(1)連接OB,過(guò)O作OC⊥AB于C,則線段OC的長(zhǎng)就是圓心O到弦AB的距離,求出BC,再根據(jù)勾股定理求出OC即可;
(2)弦AB的中點(diǎn)形成一個(gè)以O(shè)為圓心,以4cm為半徑的圓周.
(1)如圖,連接OB,過(guò)O作OC⊥AB于C,則線段OC的長(zhǎng)就是圓心O到弦AB的距離,
∵OC⊥AB,OC過(guò)圓心O,
∴AC=BC=AB=8cm,
在Rt△OCB中,由勾股定理得:(cm),
答:圓心O到弦AB的距離是cm.

(2)解:如果弦AB的長(zhǎng)度保持不變,兩個(gè)端點(diǎn)在圓周上滑動(dòng),那么弦AB的中點(diǎn)到圓心O的距離都是cm,
∴如果弦AB的長(zhǎng)度保持不變,兩個(gè)端點(diǎn)在圓周上滑動(dòng),那么弦AB的中點(diǎn)形成一個(gè)以O(shè)為圓心,以cm為半徑的圓周.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C、P是上兩點(diǎn),AB=13,AC=5,
(1)如圖(1),若點(diǎn)P是的中點(diǎn),求PA的長(zhǎng);
(2)如圖(2),若點(diǎn)P是的中點(diǎn),求PA得長(zhǎng) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,以△ABC的邊AB為直徑作⊙O,交BC于點(diǎn)D,且∠DAC=∠B.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)E是的中點(diǎn),連接AE交BC于點(diǎn)F,當(dāng)BD=5,CD=4時(shí),求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,以O(shè)為圓心的弧度數(shù)為60 o,∠BOE=45o,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE與交于點(diǎn)M,OC平分∠BOE,連接CM.說(shuō)明:CM為⊙O的切線;
(3)在(2)的條件下,若BC=1,求tan∠BCO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線;
(3)若⊙O的半徑為5,∠BAC=60°,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°, AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過(guò)點(diǎn)D。求證:BC是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一個(gè)小圓沿著一個(gè)五邊形的邊滾動(dòng),如果五邊形的各邊長(zhǎng)都和小圓的周長(zhǎng)相等,那么當(dāng)小圓滾動(dòng)到原來(lái)位置時(shí),小圓自身滾動(dòng)的圈數(shù)是
A.4B.5C.6D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB與⊙O相切于點(diǎn)B,AO的連線交⊙O于點(diǎn)C;若∠A=50°,則∠ABC為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,用鄰邊分別為a,b(a<b)的矩形硬紙板裁出以a為直徑的兩個(gè)半圓,再裁出與矩形的較長(zhǎng)邊、兩個(gè)半圓均相切的兩個(gè)小圓.把半圓作為圓錐形圣誕帽的側(cè)面,小圓恰好能作為底面,從而做成兩個(gè)圣誕帽(拼接處材料忽略不計(jì)),則a與b滿足的關(guān)系式是(   )
A.b=aB.b=aC.aD.b=a

查看答案和解析>>

同步練習(xí)冊(cè)答案