如圖,直線y=
1
2
x+3
分別交x軸、y軸于點(diǎn)A、C,點(diǎn)P是直線AC與雙曲線y=
k
x
在第一象限內(nèi)的交點(diǎn),PB⊥x軸,垂足為點(diǎn)B,且OB=2,PB=4.
(1)求k的值;
(2)分別求A,C兩點(diǎn)坐標(biāo);
(3)求在第一象限內(nèi),當(dāng)x為何范圍時(shí)一次函數(shù)的值大于反比例函數(shù)的值?
分析:(1)由OB,PB的長(zhǎng),及P在第一象限,確定出P的坐標(biāo),根據(jù)P為反比例函數(shù)與直線的交點(diǎn),得到P在反比例函數(shù)圖象上,故將P的坐標(biāo)代入反比例解析式中,即可求出k的值;
(2)由直線AC的解析式,令y=0求出對(duì)應(yīng)x的值,即為A的橫坐標(biāo),確定出A的坐標(biāo),令x=0求出對(duì)應(yīng)的y值,即為C的縱坐標(biāo),確定出C的坐標(biāo);
(3)由一次函數(shù)與反比例函數(shù)的交點(diǎn)P的橫坐標(biāo)為2,根據(jù)圖象找出一次函數(shù)在反比例函數(shù)上方時(shí)x的范圍即可.
解答:解:(1)∵OB=2,PB=4,且P在第一象限,
∴P(2,4),
由P在反比例函數(shù)y=
k
x
上,
故將x=2,y=4代入反比例函數(shù)解析式得:4=
k
2
,即k=8;

(2)對(duì)于直線y=
1
2
x+3,
令y=0,解得:x=-6;
令x=0,解得:y=3,
∴A(-6,0),C(0,3);

(3)由圖象及P的橫坐標(biāo)為2,可知:
在第一象限內(nèi),一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的范圍為x>2.
點(diǎn)評(píng):此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn),利用待定系數(shù)法確定函數(shù)解析式,以及一次函數(shù)與坐標(biāo)軸的交點(diǎn),利用了數(shù)形結(jié)合的思想,數(shù)形結(jié)合思想是數(shù)學(xué)中重要的思想方法,做第三問時(shí)注意靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-
1
2
x+2與x軸交于C,與y軸交于D,以CD為邊作矩形CDAB,點(diǎn)A在x軸上,雙曲線y=
k
x
(k<0)經(jīng)過點(diǎn)B與直線CD交于E,EM⊥x軸于M,則S四邊形BEMC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=-
12
x+4分別與x軸,y軸交于點(diǎn)C、D,以O(shè)精英家教網(wǎng)D為直徑作⊙A交CD于F,F(xiàn)A的延長(zhǎng)線交⊙A于E,交x軸于B.
(1)求點(diǎn)A的坐標(biāo);
(2)求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-
12
x+4與x軸、y軸分別交于C、D,以O(shè)D為直徑作⊙A交CD于F,F(xiàn)A的延長(zhǎng)線交⊙A于E,交x軸于B.
(1)設(shè)F(a,b),求以a,b為根的一元二次方程;
(2)求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=
12
x+2交x軸于A,交y軸于B
(1)直線AB關(guān)于y軸對(duì)稱的直線解析式為
 

(2)直線AB繞原點(diǎn)旋轉(zhuǎn)180度后的直線解析式為
 
;
(3)將直線AB繞點(diǎn)P(-1,0)順時(shí)針方向旋轉(zhuǎn)90度,求旋轉(zhuǎn)后的直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蒙山縣一模)如圖,直線y=
1
2
x-2
與x軸、y 軸分別交于點(diǎn)A 和點(diǎn)B,點(diǎn)C在直線AB上,且點(diǎn)C的縱坐標(biāo)為-1,點(diǎn)D在反比例函數(shù)y=
k
x
的圖象上,CD平行于y軸,S△OCD=
5
2
,則k的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案