【題目】如圖1,點(diǎn)C為線段AB上任意一點(diǎn)(不與點(diǎn)A、B重合),分別以AC、BC為一腰在AB的同側(cè)作等腰△ACD和△BCECACD,CBCE,∠ACD=∠BCE30°,連接AECD于點(diǎn)M,連接BDCE于點(diǎn)N,AEBD交于點(diǎn)P,連接CP

1)線段AEDB的數(shù)量關(guān)系為  ;請(qǐng)直接寫出∠APD  ;

2)將△BCE繞點(diǎn)C旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,探究線段AEDB的數(shù)量關(guān)系,并說明理由;求出此時(shí)∠APD的度數(shù);

3)在(2)的條件下求證:∠APC=∠BPC

【答案】1AEBD,30°;(2)結(jié)論:AEBD,∠APD30°.理由見解析;(3)見解析.

【解析】

1)只要證明△ACE≌△DCB,即可解決問題;
2)只要證明△ACE≌△DCB,即可解決問題;
3)如圖2-1中,分別過CCHAE,垂足為H,過點(diǎn)CCGBD,垂足為G,利用面積法證明CG=CH,再利用角平分線的判定定理證明∠DPC=EPC即可解決問題;

1)解:如圖1中,

∵∠ACD=∠BCE,

∴∠ACD+DCE=∠BCE+DCE,

∴∠ACE=∠DCB,

又∵CACD,CECB,

∴△ACE≌△DCB

AEBD,∴CAE=∠CDB,

∵∠AMC=∠DMP,

∴∠APD=∠ACD30°,

故答案為AEBD,30°

2)如圖2中,結(jié)論:AEBD,∠APD30°

理由:∵∠ACD=∠BCE,

∴∠ACD+DCE=∠BCE+DCE,

∴∠ACE=∠DCB

又∵CACD,CECB,

∴△ACE≌△DCB

AEBD,∴CAE=∠CDB,

∵∠AMP=∠DMC,

∴∠APD=∠ACD30°

3)如圖21中,分別過CCHAE,垂足為H,過點(diǎn)CCGBD,垂足為G,

∵△ACE≌△DCB

AEBD

SACESDCB

CHCG

∴∠DPC=∠EPC

∵∠APD=∠BPE,

∴∠APC=∠BPC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了緬懷先烈.繼承遺志,某中學(xué)初二年級(jí)同學(xué)于4月初進(jìn)行清明雁棲湖,憶先烈功垂不朽的定向越野活動(dòng)每個(gè)小組需要在點(diǎn)出發(fā),跑步到點(diǎn)打卡(每小組打卡時(shí)間為1分鐘),然后跑步到點(diǎn),……最后到達(dá)終點(diǎn)(假設(shè)點(diǎn),點(diǎn),點(diǎn)在一條直線上,且在行進(jìn)過程中,每個(gè)小組跑步速度是不變的),文藝組最先出發(fā).過了一段時(shí)間后,方程組開始出發(fā),兩個(gè)小組恰好同時(shí)到達(dá)點(diǎn).若方程組出發(fā)的時(shí)間為(單位:分鐘),在點(diǎn)與點(diǎn)之間的行進(jìn)過程中,文藝組方程組之間的距離為(單位:米),它們的函數(shù)圖像如下圖:則下面判斷不正確的是(

A.當(dāng)時(shí),文藝組恰好到達(dá)點(diǎn);

B.文藝組的速度為150/分鐘,方程組的速度為200/分鐘他們從點(diǎn)出發(fā)的時(shí)間間隔為2分鐘

C.圖中點(diǎn)表示方程組點(diǎn)打卡結(jié)束,開始向點(diǎn)出發(fā);

D.出發(fā)點(diǎn)到打卡點(diǎn)的距離是600米,打卡點(diǎn)到點(diǎn)的距離是800

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2mx+4m﹣8,

1)當(dāng)x≤2時(shí),函數(shù)值yx的增大而減小,求m的取值范圍.

2)以拋物線y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形AMNM,N兩點(diǎn)在拋物線上),請(qǐng)問:△AMN的面積是與m無(wú)關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.

3)若拋物線y=x2﹣2mx+4m﹣8x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題

1)(3ab2(﹣ab3

2201822016×2020(利用乘法公式計(jì)算)

3)﹣12019+(﹣2+﹣(π3.140

4[2x+2y2﹣(x+y)(4xy)﹣9y2(﹣2x),其中x=﹣2,y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB12,ACBC10,將ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),得到ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為E,連接BD,BE

1)如圖,當(dāng)α60°時(shí),延長(zhǎng)BEAD于點(diǎn)F

①求證:ABD是等邊三角形;

②求證:BFAD,AFDF;

③請(qǐng)直接寫出BE的長(zhǎng).

2)在旋轉(zhuǎn)過程中,過點(diǎn)DDG垂直于直線AB,垂足為G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫出BECE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行米比賽,在比賽過程中,兩人所跑的路程(米)與所用的時(shí)間(分)的函數(shù)關(guān)系如圖所示,則下列說法:①甲先到達(dá)終點(diǎn);②完成比賽,乙比甲少用秒;③出發(fā)分鐘后乙比甲速度快;④分時(shí)甲、乙相距米.其中錯(cuò)誤的個(gè)數(shù)是( 。

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)平面內(nèi),拋物線y=x2+bx+c經(jīng)過點(diǎn)A(2,0)、B(0,6).

(1)求拋物線的表達(dá)式;

(2)拋物線向下平移幾個(gè)單位后經(jīng)過點(diǎn)(4,0)?請(qǐng)通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)出數(shù)軸上點(diǎn)B表示的數(shù)  ;點(diǎn)P表示的數(shù)  (用含t的代數(shù)式表示)

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2

3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

4)若MAP的中點(diǎn),NBP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由,若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二元一次方程組的解 xy 的值是一個(gè)等腰三角形兩邊的長(zhǎng),且這個(gè)等腰三角形的周長(zhǎng)為 5,求腰的長(zhǎng).(注:等腰三角形中相等的兩條邊叫做等腰三角形的腰)

查看答案和解析>>

同步練習(xí)冊(cè)答案