【題目】已知:如圖,選段AB=4,以AB為直徑作半圓O,點(diǎn)C為弧AB的中點(diǎn),點(diǎn)P為直徑AB上一點(diǎn),聯(lián)結(jié)PC,過點(diǎn)C作CD∥AB,且CD=PC,過點(diǎn)D作DE∥PC,交射線PB于點(diǎn)E,PD與CE相交于點(diǎn)Q.
(1)若點(diǎn)P與點(diǎn)A重合,求BE的長;
(2)設(shè)PC=x, =y,當(dāng)點(diǎn)P在線段AO上時(shí),求y與x的函數(shù)關(guān)系式及定義域;
(3)當(dāng)點(diǎn)Q在半圓O上時(shí),求PC的長.

【答案】
(1)解:如圖1中,連接OC.

= ,

∴CO⊥AB,△AOC是等腰直角三角形,AC= OC=2

∵四邊形ACDE是菱形,

∴AE=AC=2

∴BE=AB﹣AE=4﹣2


(2)解:如圖2中,

∵PC=x,OC=2,

∴OP= ,OE=x﹣ ,

∵四邊形PCDE是菱形,

∴PD⊥EC,CQ=QE,PQ=QD,

= =y,

∴tan∠PEQ= = ,

∴y= (2≤x≤2


(3)解:如圖3中,

∵點(diǎn)Q在⊙O上,∠CQP=90°,

∴∠CQP所以對(duì)的弦CM是直徑,

∵∠M+∠OPM=90°,∠QPE+∠QEP=90°,∠OPM=∠QPE,

∴∠M=∠QEP,易知∠PCM=∠M,∠PCQ=∠PEQ,

∴∠PCO=∠PCQ=∠CEO=30°,

在Rt△POC中,PC=OC÷cos30°=


【解析】(1)如圖1中,連接OC.只要證明△AOC是等腰直角三角形即可.(2)由PC=x,OC=2,可得OP= ,OE=x﹣ ,由四邊形PCDE是菱形,推出PD⊥EC,CQ=QE,PQ=QD,由 = =y,推出tan∠PEQ= = ,由此即可解決問題.(3)由點(diǎn)Q在⊙O上,∠CQP=90°,推出∠CQP所以對(duì)的弦CM是直徑,由∠M+∠OPM=90°,∠QPE+∠QEP=90°,∠OPM=∠QPE,推出∠M=∠QEP,易知∠PCM=∠M,∠PCQ=∠PEQ,推出∠PCO=∠PCQ=∠CEO=30°,由此即可解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運(yùn)算:a*b=a(b﹣1),若a、b是關(guān)于一元二次方程x2﹣x+ m=0的兩實(shí)數(shù)根,則b*b﹣a*a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師用手機(jī)軟件記錄了某個(gè)月(30天)每天走路的步數(shù)(單位:萬步),她將記錄的結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖,在李老師每天走路的步數(shù)這組數(shù)據(jù)中,眾數(shù)與中位數(shù)分別為(
A.1.2與1.3
B.1.4與1.35
C.1.4與1.3
D.1.3與1.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王阿姨銷售草莓,草莓成本價(jià)為每千克10元,她發(fā)現(xiàn)當(dāng)銷售單價(jià)為每千克至少10元,但不高于每千克20元時(shí),銷售量y(千克)與銷售單價(jià)x(元)的函數(shù)圖象如圖所示:
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)王阿姨銷售草莓獲得的利潤為800元時(shí),求草莓銷售的單價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:

(1)如圖①,求證:OB∥AC.

(2)如圖②,若點(diǎn)E、F在線段BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度數(shù).

(3)在(2)的條件下,若平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB10AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax+bx+c的圖像如圖所示,則代數(shù)式(a+b)-c的值( ).

A.大于0
B.等于0
C.小于0
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ADABC的內(nèi)角平線,交BCD點(diǎn),DEAB,DFAC,垂足分別為E、F,連結(jié)EF,

(1)請(qǐng)根據(jù)上述幾何語言,畫出完整的圖形,作∠BAC的角平分線AD要求尺規(guī)作圖,(保留作圖痕跡,不寫作法);

(2)判斷AD是否為EF的垂直平分線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用圓規(guī)、直尺作圖,不寫作法,但到保留作圖痕跡.
已知:線段a,
求作:正方形ABCD,使其對(duì)角線AC=a.

查看答案和解析>>

同步練習(xí)冊(cè)答案