(1)計(jì)算:(2-
3
)2011×(2+
3
)2012-2cos30°-(5-
2
)0
;
(2)解方程:
6
2x-4
-
x+1
x-2
=
1
2
;
(3)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
①求證:△ABE≌△CAD;
②求∠BFD的度數(shù).
分析:(1)根據(jù)同底數(shù)冪的乘法把(2+
3
2012化為(2+
3
2011×(2+
3
),再根據(jù)積的乘方可以計(jì)算出(2-
3
2011×(2+
3
2011=1,再代入特殊角的三角函數(shù)值,進(jìn)行計(jì)算,注意計(jì)算順序:先算乘法,后算加減;
(2)首先方程兩邊同時(shí)乘以最簡(jiǎn)公分母2(x-2),再去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、把x的系數(shù)化為1,注意不要忘記檢驗(yàn);
(3)①根據(jù)等邊三角形的性質(zhì)可知∠BAC=∠C=60°,AB=CA,結(jié)合AE=CD,可證明△ABE≌△CAD;
②根據(jù)∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.
解答:解:(1)原式=(2-
3
2011×(2+
3
2011×(2+
3
)-2×
3
2
-1
=1×(2+
3
)-
3
-1
=1;

(2)去分母得:6-2(x+2)=x-2,
去括號(hào)得:6-2x-4=x-2,
移項(xiàng)得:-2x-x=-2+4-6,
合并同類(lèi)項(xiàng)得:-3x=-4,
把x的系數(shù)化為1得:x=
4
3
,
檢驗(yàn):把x=
4
3
代入最簡(jiǎn)公分母2(x-2)≠0,
故原分式方程的解為:x=
4
3
;

(3)①證明:∵△ABC為等邊三角形,
∴∠BAC=∠C=60°,AB=CA.
在△ABE和△CAD中,
AB=CA
∠BAE=∠C
AE=CD
,
∴△ABE≌△CAD(SAS),
②解:∵△ABE≌△CAD,
∴∠ABE=∠CAD.
∵∠BFD=∠ABE+∠BAD,
∴∠BFD=∠CAD+∠BAD=∠BAC=60°.
點(diǎn)評(píng):此題主要考查了解分式方程,特殊角的三角函數(shù)值,零指數(shù)冪,冪的乘方,積的乘方,全等三角形的判定與性質(zhì),以及三角形的外角內(nèi)角的關(guān)系,關(guān)鍵是同學(xué)們要牢固掌握課本知識(shí),熟記課本公式與定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在“3.15”消費(fèi)者權(quán)益日的活動(dòng)中,對(duì)甲、乙兩家商場(chǎng)售后服務(wù)的滿(mǎn)意度進(jìn)行了抽查.如圖反映了被抽查用戶(hù)對(duì)兩家商場(chǎng)售后服務(wù)的滿(mǎn)意程度(以下稱(chēng):用戶(hù)滿(mǎn)意度),分為很不滿(mǎn)意、不滿(mǎn)意、較滿(mǎn)意、很滿(mǎn)意四個(gè)等級(jí),并依次記為1分、2分、3分、4分.
(1)請(qǐng)問(wèn):甲商場(chǎng)的用戶(hù)滿(mǎn)意度分?jǐn)?shù)的眾數(shù)為
 
;乙商場(chǎng)的用戶(hù)滿(mǎn)意度分?jǐn)?shù)的眾數(shù)為
 

(2)分別求出甲、乙兩商場(chǎng)的用戶(hù)滿(mǎn)意度分?jǐn)?shù)的平均值.(計(jì)算結(jié)果精確到0.01)
(3)請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),判斷哪家商場(chǎng)的用戶(hù)滿(mǎn)意度較高,并簡(jiǎn)要說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、計(jì)算:-|-2|=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、計(jì)算:-52=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、計(jì)算:-3x•(2x2-x+4)=
-6x3+3x2-12x
;(2a-b)
(2a+b)
=4a2-b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:2-1+(π-1)0=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案