【題目】如圖,⊙O是Rt△ABC的外接圓,AB為直徑,∠ABC=30°,CD是⊙O的切線,ED⊥AB于F,
(1)求證:△CDE是等腰三角形;
(2)若AB=4,,求證:△OBC≌△DCE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析(1)由于AB是直徑,那么∠ACB=90°,而∠ABC=30°,易求∠BAC=60°,結(jié)合OA=OC,易證△AOC是正三角形,于是∠OCD=60°,結(jié)合CD是切線,易求∠DCE=30°,在Rt△AEF中,易求∠E=30°,于是∠DCE=∠E,可證△CDE實等腰三角形;
(2)在Rt△ABC中,由于∠A=60°,AB=4,易求AC=AO=2,利用勾股定理可求BC=2,CE=AE-AC=2,那么BC=CE,而∠OBC=∠OCB=∠DCE=∠DEC=30°,從而可證△OBC≌△DCE.
試題解析:證明:(1)∵AB為直徑,
∴∠ACB=90°,
又∠ABC=30°,
∴∠BAC=60°,
又∵OA=OC,
∴△AOC是正三角形,
又∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠DCE=180°﹣60°﹣90°=30°,
又∵ED⊥AB于F,
∴∠DEC=90°﹣∠BAC=30°,
∴∠DCE=∠DEC,
故△CDE為等腰三角形;
(2)在Rt△ABC中,
∵AB=4,AC=AO=2,
∴,
而,
∴BC=CE,
又∵∠OBC=∠OCB=∠DCE=∠DEC=30°,
∴△OBC≌△DCE(ASA).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為1,分別取AC、BC兩邊的中點A1、B1,則四邊形A1ABB1的面積為,再分別取A1C、B1C的中點A2、B2,取A2C、B2C的中點A3、B3,依次取下去…利用這一圖形,能直觀地計算出( )
A. 1B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P,Q在數(shù)軸上分別表示的數(shù)分別為p,q,我們把p,q之差的絕對值叫做點P,Q之間的距離,即.如圖,在數(shù)軸上,點A,B,O,C,D的位置如圖所示,則;;.請?zhí)剿飨铝袉栴}:
(1)計算____________,它表示哪兩個點之間的距離?________________________.
(2)點M為數(shù)軸上一點,它所表示的數(shù)為x,用含x的式子表示PB=____________;當PB=2時,x=____________;當x=____________時,|x+4|+|x-1|+|x-3|的值最。
(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值為________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列文字:
我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2.請解答下列問題:
(1)寫出圖2中所表示的數(shù)學等式_____;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)圖3中給出了若干個邊長為a和邊長為b的小正方形紙片及若干個邊長分別為a、b的長方形紙片,
①請按要求利用所給的紙片拼出一個幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2,
②再利用另一種計算面積的方法,可將多項式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號里.
7 | ﹣3 | ﹣5 | 0 | 2014 | ﹣46 | 7.8 | ﹣1 |
正數(shù)集合:{ ……};
負數(shù)集合:{ ……};
整數(shù)集合:{ ……};
分數(shù)集合:{ ……}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某書店準備購進甲、乙兩種圖書共100本,購書款不高于1118元,預這100本圖書全部售完的利潤不低于1100元,兩種圖書的進價、售價如表所示:
甲種圖書 | 乙種圖書 | |
進價(元/本) | 8 | 14 |
售價(元/本) | 18 | 26 |
請回答下列問題:
(1)書店有多少種進書方案?
(2)在這批圖書全部售出的條件下,(1)中的哪種方案利潤最大?最大利潤是多少?(請你用所學的一次函數(shù)知識來解決)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□OABC的三個頂點分別為O(0,0),C(4,0),B(3,3),∠AOC的平分線OP交AB于點P,則點P的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有8筐白菜,以每筐25千克為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后的記錄如下:
(1)這8筐白菜中,最接近25千克的那筐白菜為______千克;
(2)以每筐25千克為標準,這8筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2元,則出售這8筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民晚飯后1小時內(nèi)的生活方式,調(diào)查小組設(shè)計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.
根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次共調(diào)查了 名市民;
(2)補全條形統(tǒng)計圖;
(3)該市共有480萬市民,估計該市市民晚飯后1小時內(nèi)鍛煉的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com