【題目】如圖,在邊長為5的正方形ABCD中,點E在BC邊上,連接AE,過D作DF//AE交BC的延長線于點F,過點C作CG⊥DF于點G,延長AE、GC交于點H,點P是線段DG上的任意一點(不與點D、點G重合),連接CP,將△CPG沿CP翻折得到,連接. 若CH=1,則長度的最小值為__________.
【答案】
【解析】
如圖,作DM⊥AE于M,首先證明四邊形DMHG是正方形,求出正方形DMHG的邊長,以及AC的長,因為點P在線段DG上運動時,點G′在以C為圓心,CG為半徑的圓上運動,所以當A、G′、C共線時,AG′最。纱思纯山鉀Q問題.
解:如圖,作DM⊥AE于M.設(shè)CG=x,
∵AH∥DF,GH⊥DF,
∴∠MHG=∠HGD=∠DMH=90°,
∴四邊形DMHG是矩形,
∵∠ADC=∠MDG=90°,
∴∠ADM=∠CDG,
在△ADM和△CDG中,
,
∴△ADM≌△CDG(AAS),
∴DM=DG,
∴四邊形DMHG是正方形,
∴GH=DG,
∵CH=1,CG=x,
∴DG=CG+HC=x+1,
在Rt△DCG中,,
∴x=3,x=-4(舍去),
∴CG′=CG=3,
在Rt△ADC中,AC= ,
∵點P在線段DG上運動時,點G′在以C為圓心,CG為半徑的圓上運動,
∴當A、G′、C共線時,AG′最小,
∴AG′的最小值為AC-CG′= .
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在x軸上,OA=4,將線段OA繞點O順時針旋轉(zhuǎn)120°至OB的位置.
(1)求點B的坐標;
(2)求經(jīng)過點A.O、B的拋物線的解析式;
(3)在此拋物線的對稱軸上,是否存在點P,使得以點P、O、B為頂點的三角形是等腰三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程:
(1)3x2+8x﹣3=0(用配方法)
(2)4x2+1=4x(用公式法)
(3)2(x﹣3)2=x2﹣9(用因式分解法)
(4)x2+5x﹣6=0(用適當?shù)姆椒ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是面積為4的等邊三角形,△ABC∽△ADE,
AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積
等于___(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā)沿AB方向以4cm/s的速度向B點運動,同時點Q從C點出發(fā)沿CA方向以3cm/s的速度向A點運動,設(shè)運動時間為xs.
(1)當x=時,求;
(2)△APQ能否與△CQB相似?若能,求出AP的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】華為手機與蘋果手機受消費者喜愛,某商戶每周都用25000元購進250張華為手機殼和150張?zhí)O果手機殼.
(1)商戶在第一周銷售時,每張華為手機殼的售價比每張?zhí)O果手機殼的售價的2倍少10元,且兩種手機殼在一周之內(nèi)全部售完,總盈利為5000元,商戶銷售蘋果手機殼的價格每張多少元?
(2)商戶在第二周銷售時,受到各種因素的影響,每張華為手機殼的售價比第一周每張華為手機殼的售價增加,但華為手機殼的銷售量比第一周華為手機殼的銷售量下降了a%;每張?zhí)O果手機殼的售價比第一周每張?zhí)O果手機殼的售價下降了a%,但蘋果手機殼銷售量與第一周蘋果手機殼銷售量相同,結(jié)果第二周的總銷售額為30000元,求a()的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形ABCDEF的邊長為2,現(xiàn)將它沿AB方向平移1個單位,得到正六邊形A′B′C′D′E′F′,則陰影部分A′BCDE′F′的面積是( 。
A.3B.4C.D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0), 對稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個交點是(5,0); ②4a-2b+c>0:③4a+b=0;④當x>-1時,y的值隨x值的增大而增大。其中正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com