【題目】如圖所示,在平面直角坐標(biāo)系中,矩形ABCD的邊AD在x軸上,點(diǎn)A在原點(diǎn),AB=3,AD=6.若矩形以每秒2個(gè)單位長(zhǎng)度沿x軸正方向作勻速運(yùn)動(dòng).同時(shí)點(diǎn)P從A點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度沿A﹣B﹣C﹣D的路線(xiàn)作勻速運(yùn)動(dòng),當(dāng)P點(diǎn)運(yùn)動(dòng)到D點(diǎn)時(shí)停止運(yùn)動(dòng),矩形ABCD也隨之停止運(yùn)動(dòng).
(1)求P點(diǎn)從A點(diǎn)運(yùn)動(dòng)到D點(diǎn)所需的時(shí)間;
(2)設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t(秒),
①當(dāng)t=8時(shí),求出點(diǎn)P的坐標(biāo);
②若△OAP面積為S,試探究點(diǎn)P在運(yùn)動(dòng)過(guò)程中S與t之間的關(guān)系式.
【答案】
(1)
解:P點(diǎn)從A點(diǎn)運(yùn)動(dòng)到D點(diǎn)所需的時(shí)間=(3+6+3)÷1=12(秒)
(2)
解:①當(dāng)t=8時(shí),P點(diǎn)從A點(diǎn)運(yùn)動(dòng)到邊BC上,
如圖,
過(guò)點(diǎn)P作PE⊥AD于點(diǎn)E.
此時(shí)A點(diǎn)到E點(diǎn)的時(shí)間=8秒,AB+BP=8,
∴BP=5,則PE=AB=3,AE=BP=5
∵矩形向右移動(dòng)2×8=16
∴OE=OA+AE=16+5=21
∴點(diǎn)P的坐標(biāo)為(21,3).
②分三種情況:
Ⅰ、0<t≤3時(shí),點(diǎn)P在AB上運(yùn)動(dòng),此時(shí)OA=2t,AP=t
∴s= ×2t×t=t2
Ⅱ、3<t≤9時(shí),點(diǎn)P在BC上運(yùn)動(dòng),此時(shí)OA=2t
∴s= ×2t×3=3t
Ⅲ、9<t<12時(shí),點(diǎn)P在CD上運(yùn)動(dòng),此時(shí)OA=2t,AB+BC+CP=t
∴DP=(AB+BC+CD)﹣(AB+BC+CP)=12﹣t
∴s= ×2t×(12﹣t)=﹣t2+12t綜上所述,s與t之間的函數(shù)關(guān)系式是:s=
【解析】(1)求出AB+BC+CD即可得出結(jié)論;(2)①先判斷出先P在邊BC上,向右移動(dòng)的單位數(shù),再確定出矩形向右平移的單位數(shù)即可得出結(jié)論;②分三種情況利用三角形的面積公式即可求解.
【考點(diǎn)精析】關(guān)于本題考查的平行四邊形的判定與性質(zhì),需要了解若一直線(xiàn)過(guò)平行四邊形兩對(duì)角線(xiàn)的交點(diǎn),則這條直線(xiàn)被一組對(duì)邊截下的線(xiàn)段以對(duì)角線(xiàn)的交點(diǎn)為中點(diǎn),并且這兩條直線(xiàn)二等分此平行四邊形的面積才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A,C分別在x,y軸的正半軸上,已知點(diǎn)B(4,2),將矩形OABC翻折,使得點(diǎn)C的對(duì)應(yīng)點(diǎn)P恰好落在線(xiàn)段OA(包括端點(diǎn)O,A)上,折痕所在直線(xiàn)分別交BC、OA于點(diǎn)D、E;若點(diǎn)P在線(xiàn)段OA上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)P作OA的垂線(xiàn)交折痕所在直線(xiàn)于點(diǎn)Q.
(1)求證:CQ=QP
(2)設(shè)點(diǎn)Q的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)如圖2,連結(jié)OQ,OB,當(dāng)點(diǎn)P在線(xiàn)段OA上運(yùn)動(dòng)時(shí),設(shè)三角形OBQ的面積為S,當(dāng)x取何值時(shí),S取得最小值,并求出最小值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列算式能用平方差公式計(jì)算的是( )
A.(2a+b)(2b-a)
B.( x+1)(- -1)
C.(3x-y)(-3x+y)
D.(-x-y)(-x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)擲兩個(gè)質(zhì)地均勻的骰子,觀察向上一面的點(diǎn)數(shù),兩個(gè)骰子的點(diǎn)數(shù)相同的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意有理數(shù)a、b,關(guān)于x、y的二元一次方程(a﹣b)x﹣(a+b)y=a+b有一組公共解,則公共解為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8cm,BC=10cm,折疊矩形的一邊AD , 使點(diǎn)D落在BC邊的中點(diǎn)F處,折痕為AE , 求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】萬(wàn)安縣開(kāi)發(fā)區(qū)某電子電路板廠(chǎng)到井岡山大學(xué)從2014年應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專(zhuān)業(yè)知識(shí)、英語(yǔ)水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測(cè)試或成果認(rèn)定,三項(xiàng)的得分滿(mǎn)分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5:3:2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如表.
得分 | 專(zhuān)業(yè)知識(shí) | 英語(yǔ)水平 | 參加社會(huì)實(shí)踐與 |
甲 | 85 | 85 | 90 |
乙 | 85 | 85 | 70 |
丙 | 80 | 90 | 70 |
丁 | 90 | 90 | 50 |
(1)分別算出4位應(yīng)聘者的總分;
(2)表中四人“專(zhuān)業(yè)知識(shí)”的平均分為85分,方差為12.5,四人“英語(yǔ)水平”的平均分為87.5分,方差為6.25,請(qǐng)你求出四人“參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等”的平均分及方差;
(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com