【題目】如圖,已知拋物線x軸交于AB兩點,頂點C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線 ,則下列結(jié)論:①ab+c>0;②b0;③陰影部分的面積為4;④若c=﹣1,則.其中正確的是_____(寫出所有正確結(jié)論的序號)

【答案】①③④

【解析】

①根據(jù)拋物線y=ax2+bx+c的圖象,可得x=1時,y0,即ab+c0,據(jù)此判斷即可;

②首先根據(jù)拋物線開口向上,可得a0;然后根據(jù)對稱軸為x0,可得b0,據(jù)此判斷即可;

③首先判斷出陰影部分是一個平行四邊形,然后根據(jù)平行四邊形的面積=底×高,求出陰影部分的面積是多少即可;

④根據(jù)函數(shù)的最小值是,判斷出c=1時,a、b的關(guān)系即可.

x=1時,y0,∴ab+c0,∴結(jié)論①正確;

∵拋物線開口向上,∴a0

又∵對稱軸為x0,∴b0,∴結(jié)論②不正確;

∵拋物線向右平移了2個單位,∴平行四邊形的底是2

∵函數(shù)y=ax2+bx+c的最小值是y=2,∴平行四邊形的高是2,∴陰影部分的面積是:2×2=4,∴結(jié)論③正確;

c=1,∴b2=4a,∴結(jié)論④正確.

綜上,結(jié)論正確的是:①③④.

故答案為:①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知點A在反比例函數(shù)x0)的圖像上,點B在經(jīng)過點(-21)的反比例函數(shù)x0)的圖像上,連結(jié)OA,OB,AB.

1)求k的值;

2)若∠AOB90°,求∠OAB的度數(shù);

3)將反比例函數(shù)x0)的圖像繞坐標(biāo)原點O逆時針旋轉(zhuǎn)45°得到曲線l,過點E ,F的直線與曲線l相交于點M,N,如圖②所示,求△OMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)的一點,且P到三個頂點A,BC的距離分別為3,4,5,則ABC的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,線段EF在對角線AC上(E不與A重合,F不與C重合),EGAD,FHBC,垂足分別是GH,且EG+FH=EF.

1)寫出圖中與△AEG相似的三角形;

2)求線段EF的長;

3)設(shè)EGx,△AEG與△CFH的面積和為S,寫出S關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出S的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對角互補且有一組鄰邊相等的四邊形稱為奇異四邊形.

1)概念理解:

在平行四邊形、菱形、矩形、正方形中,你認為屬于奇異四邊形的有__________ ;

2)性質(zhì)探究:

①如圖1,四邊形ABCD是奇異四邊形,AB=AD,求證:CA平分∠BCD;

②如圖2,四邊形ABCD是奇異四邊形,AB=AD,∠BCD=,試說明:cosα=;

3)性質(zhì)應(yīng)用:

如圖3,四邊形ABCD是奇異四邊形,四條邊中僅有BC=CD,且四邊形ABCD的周長為6+2,∠BAC=45°,AC=3,求奇異四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過點A(3,0),C(﹣1,0).

(1)求二次函數(shù)的解析式;

(2)如圖,點P是二次函數(shù)圖象的對稱軸上的一個動點,二次函數(shù)的圖象與y軸交于點B,當(dāng)PB+PC最小時,求點P的坐標(biāo);

(3)在第一象限內(nèi)的拋物線上有一點Q,當(dāng)△QAB的面積最大時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,C三點在O,直徑BD平分∠ABC,過點DDEAB交弦BC于點E,BC的延長線上取一點F,使得EFDE

1)求證DF是⊙O的切線;

2)連接AFDE于點M AD4,DE5,DM的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在把一張正方形紙片按如圖方式剪去一個半徑為40厘米的圓面后得到如圖紙片,且該紙片所能剪出的最大圓形紙片剛好能與前面所剪的扇形紙片圍成一圓錐表面,則該正方形紙片的邊長約為( 。├迕祝ú挥嫇p耗、重疊,結(jié)果精確到1厘米,≈1.41,≈1.73)

A. 64 B. 67 C. 70 D. 73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直線y=2x+t﹣3與函數(shù)y=的圖象有且只有兩個公共點時,則t的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案