【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出以下結論:abc0 b24ac0 4b+c0 若B(﹣,y1)、C,y2)為函數(shù)圖象上的兩點,則y1y2當﹣3≤x≤1時,y≥0,

其中正確的結論是(填寫代表正確結論的序號)__________________

【答案】②③⑤

【解析】解:由圖象可知,a0,b0,c0abc0,故錯誤.

拋物線與x軸有兩個交點,b2﹣4ac0,故正確.

拋物線對稱軸為x=1,與x軸交于A3,0),拋物線與x軸的另一個交點為(1,0),a+b+c=0, =1b=2a,c=3a,4b+c=8a3a=5a0,故正確.

B,y1)、Cy2)為函數(shù)圖象上的兩點,又點C離對稱軸近,y1,<y2,故錯誤,

由圖象可知,﹣3≤x≤1時,y≥0,故正確.

∴②③⑤正確,

故答案為②③⑤

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A-1,0),B3,0)兩點.

1)求該拋物線的解析式;

2)求該拋物線的對稱軸以及頂點坐標;

3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學校,以下是他本次上學所用的時間與路程的關系示意圖,根據(jù)圖中提供的信息回答下列問題:

(1)小明家到學校的路程是______米;

(2)小明在書店停留了______分鐘;

(3)本次上學途中,小明一共行駛了_____米,一共用了_______分鐘;

(4)在整個上學的途中________(哪個時間段)小明騎車速度最快,最快的速度是____/分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形。

(1)你認為圖②中陰影部分的正方形的邊長等于________

(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積。

方法①___________________________________

方法②___________________________________

(3)觀察圖②,試寫出,,這三個代數(shù)式之間的等量關系

(4)根據(jù)(3)題中的等量關系,解決如下問題:若,,則求的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯誤的是( )

A. 拋物線于x軸的一個交點坐標為(﹣2,0)

B. 拋物線與y軸的交點坐標為(0,6)

C. 拋物線的對稱軸是直線x=0

D. 拋物線在對稱軸左側部分是上升的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紅紅有5張寫著以下數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

(1) 從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是_________

(2) 從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是_________

(3) 從中取出除0以外的其他4張卡片,將這4個數(shù)字進行加、減、乘、除或乘方等混合運算,使運算結果為24(注:每個數(shù)字只能用一次,如:23×[1-(-2)],請另外寫出兩種符合要求的運算式子:_________________ _________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設該款童裝每件售價x元,每星期的銷售量為y件.

1)求yx之間的函數(shù)關系式;

2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為邊長為2的正方形ABCD的對角線BD上任一點,過點PPEBC于點E,PFCD于點F,連接EF.給出以下4個結論:①APEF;②APEF;③EF最短長度為;④若∠BAP30°時,則EF的長度為2.其中結論正確的有(  )

A. ①②③B. ①②④C. ②③④D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線分別與x軸、y軸交于兩點,與直線交于點C42).

1)點A坐標為( , ),B為( , );

2)在線段上有一點E,過點Ey軸的平行線交直線于點F,設點E的橫坐標為m,當m為何值時,四邊形是平行四邊形;

3)若點Px軸上一點,則在平面直角坐標系中是否存在一點Q,使得四個點能構成一個菱形.若存在,求出所有符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案