【題目】已知直線與雙曲線交于,兩點,過作軸于點,過作軸于點,連接.
(Ⅰ)求,兩點的坐標(biāo);
(Ⅱ)試探究直線與的位置關(guān)系并說明理由.
(Ⅲ)已知點,且,在拋物線上,若當(dāng)(其中)時,函數(shù)的最小值為,最大值為,求的值.
【答案】(Ⅰ)若,則,,若,則,;(Ⅱ),理由見解析;(Ⅲ)的值為
【解析】
(Ⅰ)把直線y=x+t與雙曲線的解析式聯(lián)立成方程組,解方程組即可求出交點坐標(biāo),即C、D兩點的坐標(biāo);
(Ⅱ)位置關(guān)系是:平行,求出直線AB的解析式,與直線CD的解析式y=x+t比較,k相等說明兩直線平行;
(Ⅲ)先求出C點坐標(biāo),再利用待定系數(shù)法求出拋物線的解析式,最后通過分類討論:①當(dāng)時,②當(dāng),③當(dāng),分別根據(jù)函數(shù)的最小值為,最大值為,結(jié)合二次函數(shù)的性質(zhì)列出方程,得出m,n的值.
解:(Ⅰ)聯(lián)立,解得:或,
設(shè),,
若,則,,
若,則,;
(Ⅱ),
理由:不妨設(shè),
由(1)知, ,
∴,,
設(shè)直線的解析式為,
則將,兩點坐標(biāo)代入有:,,
∴,
∴直線的解析式為:,
∴直線與的位置關(guān)系是;
(Ⅲ)將代入雙曲線得,
將代入直線,得,
∵,
∴由(Ⅰ)知,
∴,
∵,在拋物線上,
∴,解得,
即,
由,可知,,
①當(dāng)時,由函數(shù)的最小值為,最大值為,可知,
∴,即為一元二次方程的兩解,即,
∵,
∴,.
又∵,
∴此情況不合題意;
②當(dāng),即時,
由函數(shù)的最小值為,最大值為,可知,
解得:,
此時,即,符合題意,
∴;
③當(dāng),即時,
由函數(shù)的最小值為,最大值為,可知,
解得:,
∵,
∴此情況不合題意,
綜上所述,滿足題意的的值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于A(3,0)、B(1,0)兩點,與y軸相交于點C(0,3),點C.D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D.
(1)D點坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,∠ACB=90°,AC=4,BC=6,點E,F分別在邊AB,BC上,將△ABC沿直線EF折疊,點B恰好落在AC邊上的點D處,且CD=3.
(1)求CF的長;
(2)點G是射線BA上的一個動點,連接DG,GC,BD,△DGC的面積與△DGB的面積相等,
①當(dāng)點G在線段BA上時,求BG的長;
②當(dāng)點G在線段BA的延長線上時,BG=______;
(3)將直線EF平移,平移后的直線與直線BC,直線AC分別交于點M和點N,以線段MN為一邊作正方形MNPQ,點P與點B在直線MN兩側(cè),連接PD,當(dāng)PD∥BC時,請直接寫出tan∠QBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在利用描點法畫二次函數(shù)y=ax2+bx+c(a=0)的圖象時,先取自變量x的一些值,計算出相應(yīng)的函數(shù)值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接著,他在描點時發(fā)現(xiàn),表格中有一組數(shù)據(jù)計算錯誤,他計算錯誤的一組數(shù)據(jù)是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是邊BC上一點,過點D、E分別作BC、CD的平行線交于點F,聯(lián)結(jié)AF并延長,與射線DC交于點G.
(1)當(dāng)點G與點C重合時,求CE:BE的值;
(2)當(dāng)點G在邊CD上時,設(shè)CE=m,求△DFG的面積;(用含m的代數(shù)式表示)
(3)當(dāng)△AFD∽△ADG時,求∠DAG的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春曉中學(xué)為開展“校園科技節(jié)”活動,計劃購買A型、B型兩種型號的航模.若購買8個A型航模和5個B型航模需用2200元;若購買4個A型航模和6個B型航模需用1520元.求A,B兩種型號航模的單價分別是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=x+m(m≠0)與反比例函數(shù)的圖象在同一平面直角坐標(biāo)系中是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O, ,則BC邊的長為_.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2和x軸交于A,B(點A在點B右邊)兩點,和y軸交于點C,P為拋物線上的動點.
(1)求出A,C的坐標(biāo);
(2)求動點P到原點O的距離的最小值,并求此時點P的坐標(biāo);
(3)當(dāng)點P在x軸下方的拋物線上運動時,過P的直線交x軸于E,若△POE和△POC全等,求此時點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com