(2008•煙臺(tái))如圖,AB是⊙O的直徑,且點(diǎn)C為⊙O上的一點(diǎn),∠BAC=30°,M是OA上一點(diǎn),過(guò)M作AB的垂線(xiàn)交AC于點(diǎn)N,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,直線(xiàn)CF交EN于點(diǎn)F,且∠ECF=∠E.
(1)證明:CF是⊙O的切線(xiàn);
(2)設(shè)⊙O的半徑為1,且AC=CE,求MO的長(zhǎng).

【答案】分析:(1)要證CF為⊙O的切線(xiàn),只要證明∠OCF=90°即可;
(2)根據(jù)三角函數(shù)求得AC的長(zhǎng),從而可求得BE的長(zhǎng),再利用三角函數(shù)可求出MB的值,從而可得到MO的長(zhǎng).
解答:(1)證明:如圖,連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵∠BAC=30°,
∴∠ABC=60°;
在Rt△EMB中,∵∠E+∠MBE=90°,
∴∠E=30°;
∵∠E=∠ECF,
∴∠ECF=30°,
∴∠ECF+∠OCB=90°;
∵∠ECF+∠OCB+∠OCF=180°,
∴∠OCF=90°,
∴CF為⊙O的切線(xiàn);

(2)解:在Rt△ACB中,∠A=30°,∠ACB=90°,
∴AC=ABcos30°=,BC=ABsin30°=1;
∵AC=CE,
∴BE=BC+CE=1+,在Rt△EMB中,∠E=30°,∠BME=90°,
∴MB=BEsin30°=
∴MO=MB-OB=
點(diǎn)評(píng):本題考查的是切線(xiàn)的判定,要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•煙臺(tái))如圖,拋物線(xiàn)L1:y=-x2-2x+3交x軸于A(yíng),B兩點(diǎn),交y軸于M點(diǎn).將拋物線(xiàn)L1向右平移2個(gè)單位后得到拋物線(xiàn)L2,L2交x軸于C,D兩點(diǎn).
(1)求拋物線(xiàn)L2對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)拋物線(xiàn)L1或L2在x軸上方的部分是否存在點(diǎn)N,使以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是拋物線(xiàn)L1上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)A,B重合),那么點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q是否在拋物線(xiàn)L2上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•煙臺(tái))如圖,拋物線(xiàn)L1:y=-x2-2x+3交x軸于A(yíng),B兩點(diǎn),交y軸于M點(diǎn).將拋物線(xiàn)L1向右平移2個(gè)單位后得到拋物線(xiàn)L2,L2交x軸于C,D兩點(diǎn).
(1)求拋物線(xiàn)L2對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)拋物線(xiàn)L1或L2在x軸上方的部分是否存在點(diǎn)N,使以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是拋物線(xiàn)L1上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)A,B重合),那么點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q是否在拋物線(xiàn)L2上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2008•煙臺(tái))如圖,菱形ABCD的邊長(zhǎng)為2,BD=2,E、F分別是邊AD,CD上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說(shuō)明理由;
(3)設(shè)△BEF的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省泰州市姜堰市溱潼實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2008•煙臺(tái))如圖,在Rt△ABC內(nèi)有邊長(zhǎng)分別為a,b,c的三個(gè)正方形,則a,b,c滿(mǎn)足的關(guān)系式是( )

A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c

查看答案和解析>>

同步練習(xí)冊(cè)答案