【題目】如圖1,在線段AB上找一點(diǎn)C,CAB分為ACCB兩段,其中BC是較小的一段,如果BC·AB=AC2,那么稱線段AB被點(diǎn)C黃金分割。

為了增加美感,黃金分割經(jīng)常被應(yīng)用在繪畫、雕塑、音樂、建筑等藝術(shù)領(lǐng)域。如圖2,在我國(guó)古代紫禁城的中軸線上,太和門位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側(cè),三個(gè)建筑的位置關(guān)系滿足黃金分割,已知太和殿到內(nèi)金水橋的距離約為100丈,求太和門到太和殿之間的距離(的近似值取2.2)。

【答案】60.

【解析】

設(shè)太和門到太和殿的距離為x丈,根據(jù)黃金分割的概念列出比例式,計(jì)算即可.

解: 由題意可得,

,(舍)

x50+50×2.2=60,

答:太和門到太和殿的距離為60丈.

故答案為:60丈.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0、1、2;乙袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、-2、0;先從甲袋中隨機(jī)取出一個(gè)小球,記錄標(biāo)有的數(shù)字為x,再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M的坐標(biāo)為(xy).

(1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);

(2)求點(diǎn)Mx,y)在函數(shù)y=-x2-1的圖象上的概率

(3)若以點(diǎn)M為圓心,2為半徑作M,求M與坐標(biāo)軸相切的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2(k1)xk210

(1) 當(dāng)k取何值方程有兩個(gè)實(shí)數(shù)根

(2) 是否存在k值使方程的兩根為一個(gè)矩形的兩鄰邊長(zhǎng),且矩形的對(duì)角線長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,ADC=90°EAB的中點(diǎn).

1)求證:ADC∽△ACB;

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4,AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升。居民教育、文化和娛樂消費(fèi)支出持續(xù)增長(zhǎng)。下圖為北京市統(tǒng)計(jì)局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費(fèi)支出的折線圖。

說明:在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較。根據(jù)上述信息,下列結(jié)論中錯(cuò)誤的是(

A. 2017年第二季度環(huán)比有所提高

B. 2017年第四季度環(huán)比有所降低

C. 2018年第一季度同比有所提高

D. 2018年第四季度同比有所提高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究函數(shù)的圖象與性質(zhì))

1)函數(shù)的自變量x的取值范圍是________;

2)下列四個(gè)函數(shù)圖象中,函數(shù)的圖象大致是_______;

3)對(duì)于函數(shù),求當(dāng)x>0時(shí),y的取值范圍。請(qǐng)將下面求解此問題的過程補(bǔ)充完整:

解:因?yàn)?/span>x>0,所以_________。

因?yàn)?/span>,所以y________

(拓展運(yùn)用)

4)若函數(shù),則y的取值范圍是_______________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1所示的遮陽(yáng)傘,傘柄垂直于水平地面,其示意圖如圖2.當(dāng)傘收緊時(shí),點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時(shí),動(dòng)點(diǎn)PAB移動(dòng);當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),傘張得最開.已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.

1﹚求AP長(zhǎng)的取值范圍;

2﹚在陽(yáng)光垂直照射下,傘張得最開時(shí),求傘下的陰影﹙假定為圓面﹚面積S﹙結(jié)果保留π﹚.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|m1|x22x30.

(1)求證:當(dāng)m≠1時(shí),原方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)若原方程的一個(gè)根是1,求此時(shí)m的值及方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于B點(diǎn),OC=BCAC=OB

(1)求證:AB是⊙O的切線;

(2)若∠ACD=45°,OC=2,求弦CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案