16、如圖,已知DE∥BC,AB∥CD,E為AB的中點,∠A=∠B.下列結(jié)論:
①AC=DE;②CD=AE;
③AC平分∠BCD;④O點是DE的中點;
⑤AC=AB.其中正確的番號有
①②④
分析:根據(jù)平行線的性質(zhì)、平行四邊形的性質(zhì)、全等三角形全等的判定及性質(zhì)等知識點分別證明各結(jié)論即可得解.
解答:解:∵已知DE∥BC,AB∥CD,
∴四邊形BCDE為平行四邊行,
∴則CB=DE;
∵∠A=∠B,
∴AC=BC,
∴AC=DE,即可得①正確;
根據(jù)平行線等分線段性質(zhì)可得AO=CO,
∵AB∥CD,
∴∠A=∠DCO,
又∵∠AOE=∠COD,
∴△AOE≌△COD(ASA),
∴AE=CD,即可得②正確;OE=OD,O點是DE的中點;即可得④正確;
結(jié)論③⑤無法證明.
故答案填:①②④.
點評:本題考查了平行線的性質(zhì)、平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形全等的判定及性質(zhì)等知識點,綜合性較強,有一定的難度.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、如圖,已知DE∥BC,且BF:EF=4:3,則AC:AE=
4:3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知DE∥BC,AD=2,BD=3,AE=1,那么AC的長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知DE∥BC,
AD
BD
=2
,那么
C△ADE
C△ABC
=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖,EF∥AD,∠1=∠2,∠BAC=70°,將求∠AGD的過程填寫完整.
∵EF∥AD,
已知
已知

∴∠2=
∠3
∠3
兩直線平行,同位角相等
兩直線平行,同位角相等

又∵∠1=∠2,
已知
已知

∴∠1=∠3.
等量代換
等量代換

∴AB∥
DG
DG
內(nèi)錯角相等,兩直線平行
內(nèi)錯角相等,兩直線平行

∴∠BAC+
∠AGD
∠AGD
=180°.
兩直線平行,同旁內(nèi)角互補
兩直線平行,同旁內(nèi)角互補

又∵∠BAC=70°,
已知
已知

∴∠AGD=
110°
110°
數(shù)據(jù)計算
數(shù)據(jù)計算

(2)如圖,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠DEC的度數(shù).
(3)一個多邊形的每一個外角都等于24°,求這個多邊形的邊數(shù).
(4)判斷下列命題是真命題還是假命題,如果是真命題,指出命題的題設(shè)和結(jié)論;如果是假命題舉出一個反例
①相等的角是對頂角;              ②兩直線平行,內(nèi)錯角相等.

查看答案和解析>>

同步練習冊答案