【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足為D點(diǎn),AE平分∠BAC,交BD于點(diǎn)F交BC于點(diǎn)E,點(diǎn)G為AB的中點(diǎn),連接DG,交AE于點(diǎn)H,下列結(jié)論錯(cuò)誤的是( 。
A.AH=2DFB.HE=BEC.AF=2CED.DH=DF
【答案】A
【解析】
通過證明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性質(zhì)可得AG=BG,DG⊥AB,由余角的性質(zhì)可得∠DFA=∠AHG=∠DHF,可得DH=DF,由線段垂直平分線的性質(zhì)可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故選項(xiàng)C不符合題意,
∵點(diǎn)G為AB的中點(diǎn),AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,
∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故選項(xiàng)D不符合題意,
連接BH,
∵AG=BG,DG⊥AB,
∴AH=BH,
∴∠HAB=∠HBA=22.5°,
∴∠EHB=45°,且AE⊥BC,
∴∠EHB=∠EBH=45°,
∴HE=BE,
故選項(xiàng)B不符合題意,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,0),B(3,0).
(1)在y軸上找一點(diǎn)C,使之滿足△ABC的面積為12,求點(diǎn)C的坐標(biāo).
(2)在y軸上找一點(diǎn)D,使BD=AB,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鎮(zhèn)的一種特產(chǎn)由于運(yùn)輸原因,長期只能在當(dāng)?shù)劁N售.當(dāng)?shù)卣畬υ撎禺a(chǎn)的銷售投資收益為:每投入x萬元,可獲得利潤當(dāng)?shù)卣當(dāng)M在“十二五”規(guī)劃中加快開發(fā)該特產(chǎn)的銷售,其規(guī)劃方案為:在規(guī)劃前后對該項(xiàng)目每年最多可投入100萬元的銷售投資,在實(shí)施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產(chǎn)只能在當(dāng)?shù)劁N售;公路通車后的3年中,該特產(chǎn)既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤
(1)若不進(jìn)行開發(fā),求5年所獲利潤的最大值是多少?
(2)若按規(guī)劃實(shí)施,求5年所獲利潤(扣除修路后)的最大值是多少?
(3)根據(jù)(1)、(2),該方案是否具有實(shí)施價(jià)值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直線向右平移個(gè)單位后與雙曲線有唯一公共點(diǎn),交另一雙曲線于,若軸平分的面積,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn),分別在,上,且為等邊三角形,下列結(jié)論:
①;②;③;④.
其中正確的結(jié)論個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把和按如圖擺放(點(diǎn)與重合),點(diǎn)、、在同一條直線上.已知:,,,,.如圖,從圖的位置出發(fā),以的速度沿向勻速移動,在移動的同時(shí),點(diǎn)從的頂點(diǎn)出發(fā),以的速度沿向點(diǎn)勻速移動;當(dāng)點(diǎn)移動到點(diǎn)時(shí),點(diǎn)停止移動,也隨之停止移動.與交于點(diǎn),連接,設(shè)移動時(shí)間為.
用含的代數(shù)式表示線段和的長,并寫出的取值范圍;
當(dāng)為何值時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)E,∠ADB=∠ACB.
(1)求證:;
(2)若AB⊥AC,AE:EC=1:2,F(xiàn)是BC中點(diǎn),求證:四邊形ABFD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com