【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°,則下列結(jié)論:
①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.
其中正確的個數(shù)有多少個?( 。
A.1
B.2
C.3
D.4
【答案】C
【解析】解:①∵AB∥CD,
∴∠BOD=∠ABO=a°,
∴∠COB=180°﹣a°=(180﹣a)°,
又∵OE平分∠BOC,
∴∠BOE=∠COB=(180﹣a)°.故①正確;
②∵OF⊥OE,
∴∠EOF=90°,
∴∠BOF=90°﹣(180﹣a)°=a°,
∴∠BOF=∠BOD,
∴OF平分∠BOD所以②正確;
③∵OP⊥CD,
∴∠COP=90°,
∴∠POE=90°﹣∠EOC=a°,
∴∠POE=∠BOF; 所以③正確;
∴∠POB=90°﹣a°,
而∠DOF=a°,所以④錯誤.
故選:C.
【考點精析】根據(jù)題目的已知條件,利用角的平分線和角的運算的相關(guān)知識可以得到問題的答案,需要掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;角之間可以進(jìn)行加減運算;一個角可以用其他角的和或差來表示.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點H.
(1)若∠A=100°,如圖,求∠DHE的度數(shù);
(2)若△ABC中∠A=50°,直接寫出∠DHE的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( 。
A.4m6÷2m3=2m2B.2x2+x3=3x5
C.(ab2)3=a3b5D.2a2a2=2a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗探究:
(1)動手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=
②如圖2,若直角三角板ABC不動,改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點B、C,那么∠ABD+∠ACD=
(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著 關(guān)系
(3)靈活應(yīng)用:
請你直接利用以上結(jié)論,解決以下列問題:
①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,∠BEC
②如圖5,∠ABD,∠ACD的10等分線相交于點F1、F2、…、F9 ,
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明今年的年齡是13歲,小華的年齡的3倍比小明的2倍多10歲,如果設(shè)小華的年齡為x歲,那么可以得到方程:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a=(﹣2013)0 , b=(﹣0.5)﹣1 , c=(﹣)﹣2 , 則a、b、c的大小為( )
A.a>c>b
B.c>b>a
C.c>a>b
D.a>b>c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海長隆海洋館的某紀(jì)念品原價18元,連續(xù)兩次降價a%,后售價為11元,下列所列方程中正確的是( )
A.18(1+a%)2=11B.18(1﹣a2%)=11
C.18(1﹣2a%)=11D.18(1﹣a%)2=11
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com