【題目】如圖所示,用三種大小不等的正方形①②③和…個(gè)缺角的正方形拼成一個(gè)長方形ABCD(不重疊且沒有縫隙),若GH=a,GK=a+1,BF=a﹣2
(1)試用含a的代數(shù)式表示:正方形②的邊長CM的長= ,正方形③的邊長DM的長= ;
(2)求長方形ABCD的周長(用含a的代數(shù)式表示);并求出當(dāng)a=3時(shí),長方形周長的值.
【答案】(1)2a﹣2,3a﹣5;(2)56.
【解析】
(1)根據(jù)正方形的性質(zhì)和線段的和差關(guān)系即可得出CM和DM;
(2)先求出長方形ABCD的長和寬,再用2(長+寬)即可得出長方形ABCD的面積,將a=3代入即可求得周長.
(1)CM=BF+GH=a﹣2+a=2a﹣2,
DM=MK=2CM﹣GK=2(2a﹣2)﹣(a+1)=3a﹣5,
故答案為:2a﹣2,3a﹣5;
(2)長方形ABCD的寬DC為:DM+CM=5a﹣7,
長AD為:BN+NC=DM+a+1+3(a﹣2)=3a﹣5+a+1+3a﹣6=7a﹣10,
周長為:2(AD+DC)=2(5a﹣7)+2(7a﹣1)=24a﹣16,
當(dāng)a=3時(shí),周長為:24×3﹣16=56.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=45°,tan∠ACB= .如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC= ,AC與y軸交于點(diǎn)E.
(1)求AC所在直線的函數(shù)解析式;
(2)過點(diǎn)O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點(diǎn)F(10,0),在△ABC的邊上取兩點(diǎn)P,Q,是否存在以O(shè),P,Q為頂點(diǎn)的三角形與△OFP全等,且這兩個(gè)三角形在OP的異側(cè)?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)m、n在數(shù)軸上的位置如圖所示,則下列不等關(guān)系正確的是( )
A. n<m B. n2<m2
C. n0<m0 D. | n |<| m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察算式:
;;;;……
(1)請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:7×9+1=________2;
(2)用含n的等式表示上面的規(guī)律:________;
(3)用找到的規(guī)律解決下面的問題:計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面例題,然后按要求解答問題:
例題:已知二次三項(xiàng)式 有一個(gè)因式是 ,求另一個(gè)因式以及 的值.
解法一:設(shè)另一個(gè)因式為 ,
得 ,
則 ,
,
解得 ,
另一個(gè)因式為 , 的值為 .
解法二:∵二次三項(xiàng)式 x2-4x+m 有一個(gè)因式是 (x+3),
∴當(dāng)x+3=0,即x=-3時(shí),x2-4x+m=0.
把x=-3代入x2-4x+m=0,
得m=-21,
而x2-4x-21=(x+3)(x-7).
問題:分別仿照以上兩種方法解答下面問題:
(1)已知二次三項(xiàng)式 有一個(gè)因式是 ,求另一個(gè)因式以及 的值.
解法一: 解法二:
(2)直接回答:
已知關(guān)于x的多項(xiàng)式 2x3 (3k)x22x1有一個(gè)因式是 1,則k的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F是ABCD對(duì)角線AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請(qǐng)寫出圖中除△ABE≌△CDF外其余兩對(duì)全等三角形(不再添加輔助線).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長方形運(yùn)動(dòng)場(chǎng)被分隔成、、、、共個(gè)區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.
(1)列式表示每個(gè)區(qū)長方形場(chǎng)地的周長,并將式子化簡;
(2)列式表示整個(gè)長方形運(yùn)動(dòng)場(chǎng)的周長,并將式子化簡;
(3)如果, ,求整個(gè)長方形運(yùn)動(dòng)場(chǎng)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.
(2)若x2+4x﹣4=0,求3(x﹣2)2﹣6(x+1)(x﹣1)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判斷∠ADC是否是直角,并說明理由;
(2)試求四邊形草坪ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com