【題目】已知:如圖,⊙O是△ABC的外接圓,,點(diǎn)D在邊BC上,AE∥BC,AE=BD

(1)求證:AD=CE;

(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形

【答案】(1)證明見解析;(2)證明見解析.

【解析】

試題分析:(1)根據(jù)等弧所對的圓周角相等,得出∠B=∠ACB,再根據(jù)全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;

(2)連接AO并延長,交邊BC于點(diǎn)H,由等腰三角形的性質(zhì)和外心的性質(zhì)得出AH⊥BC,再由垂徑定理得BH=CH,得出CG與AE平行且相等.

試題解析:(1)在⊙O中,∵,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,AB=CA,B=EAC,BD=AE,∴△ABD≌△CAE(SAS),∴AD=CE;

(2)連接AO并延長,交邊BC于點(diǎn)H,∵,OA為半徑,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四邊形AGCE是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一只不透明的袋子中裝有2個白球和2個黑球,這些球除顏色外都相同

(1)若先從袋子中拿走m個白球,這時從袋子中隨機(jī)摸出一個球是黑球的事件為“必然事件”,則m的值為 ;

(2)若將袋子中的球攪勻后隨機(jī)摸出1個球(不放回),再從袋中余下的3個球中隨機(jī)摸出1個球,求兩次摸到的球顏色相同的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個物體做左右方向的運(yùn)動,規(guī)定向右運(yùn)動3m記作+3m,那么向左運(yùn)動3m記作( 。

A. +3m B. ﹣3m C. +6m D. ﹣6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:

13.587--5+-5++7-+3-+1.587);

2)(-15×{[4÷(-22+(-1.25×(-0.4(-)-32}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一根長為22cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長度為hcm,則h的取值范圍是 ( ).

A. 9cmh≤10cm B. 10cmh≤11cm C. 12cmh≤13cm D. 8cmh≤9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)P2,-3)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是( 。

A. (2, 3)B. (2, -3)C. (-2,3D. (-2, -3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,CD⊥AB于D,求:

(1)斜邊AB的長;

(2)△ABC的面積;

(3)高CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形, 在同一條直線上,連結(jié)

(1)請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

(2)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索研究.請解決下列問題:

(1)已知ABC中,∠A=90°,B=67.5°,請畫一條直線,把這個三角形分割成兩個等腰三角形.(請你選用下面給出的備用圖,并把所有不同的分割方法都畫出來,圖不夠可以自己畫.只需畫圖,不必說明理由,但要在圖中標(biāo)出相等兩角的度數(shù)).

(2)已知等腰ABC中,AB=AC,DBC上一點(diǎn),連接AD,若ABDACD都是等腰三角形,則∠B的度數(shù)為  (請畫出示意圖,并標(biāo)明必要的角度).

查看答案和解析>>

同步練習(xí)冊答案