【題目】如圖,在直角坐標系xOy中,直線y=mx與雙曲線相交于A(﹣1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.

(1)求m、n的值;

(2)求直線AC的解析式.

(3)點P在雙曲線上,且△POC的面積等于△ABC面積的,求點P的坐標。

【答案】(1)m=-2,n=-2(2)y=-x+1(3)(2,-1)或(-2,1)

【解析】

(1)由題意,根據(jù)對稱性得到B的橫坐標為1,確定出C的坐標,根據(jù)三角形AOC的面積求出A的縱坐標,確定出A坐標,將A坐標代入一次函數(shù)與反比例函數(shù)解析式,即可求出mn的值;
(2)設直線AC解析式為y=kx+b,將AC坐標代入求出kb的值,即可確定出直線AC的解析式.

(3)根據(jù)雙曲線的對稱性求得B(1,-2),求出三角形ABC的面積,設點P(a,),再根據(jù)SPOC=SABC列出關(guān)于a的方程即可。

(1)∵直線y=mx與雙曲線y=相交于A(-1,a)、B兩點,

B點橫坐標為1,BCx軸,則C(1,0),

AOC的面積為1,

A(-1,2),

A(-1,2)代入y=mx,y=可得m=-2,n=-2;

(2)設直線AC的解析式為y=kx+b,

y=kx+b經(jīng)過點A(-1,2)、C(1,0)

,

解得k=-1,b=1,

∴直線AC的解析式為y=-x+1;

(3)由對稱性可得B(1,-2),

SABC==2,

設點P(a,),

SPOC=SABC,

SPOC=,

解得a=2-2,

∴點P的坐標為(2,-1)或(-2,1).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線 y=ax2﹣5ax+c x 軸于點 A,點 A 的坐標為(4,0).

(1)用含 a 的代數(shù)式表示 c

(2) a時,求 x 為何值時 y 取得最小值,并求出 y 的最小值.

(3) a時,求 0≤x≤6 y 的取值范圍.

(4)已知點 B 的坐標為(0,3),當拋物線的頂點落在△AOB 外接圓內(nèi)部時,直接寫出 a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場需求和生產(chǎn)經(jīng)驗,乙產(chǎn)品每天產(chǎn)量不少于5件,當每天生產(chǎn)5件時,每件可獲利120元,每增加1件,當天平均每件獲利減少2元.設每天安排x人生產(chǎn)乙產(chǎn)品.

(1)根據(jù)信息填表

產(chǎn)品種類

每天工人數(shù)(人)

每天產(chǎn)量(件)

每件產(chǎn)品可獲利潤(元)

15

(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多550元,求每件乙產(chǎn)品可獲得的利潤.

(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤W(元)的最大值及相應的x值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明的書包里只放了A4大小的試卷共4張,其中語文2張、數(shù)學1張、英語1張.

若隨機地從書包中抽出2張,求抽出的試卷中有英語試卷的概率為______;

若隨機地從書包中抽出3張,抽出的試卷中有英語試卷的概率為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于函數(shù)(k>0)有以下四個結(jié)論:

①這是y關(guān)于x的反比例函數(shù);②當x>0時,y的值隨著x的增大而減;③函數(shù)圖象與x軸有且只有一個交點;④函數(shù)圖象關(guān)于點(0,3)成中心對稱.

其中正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACABCD的對角線,在AD邊上取一點F,連接BFAC于點E,并延長BFCD的延長線于點G

(1)若∠ABF=∠ACF,求證:CE2EFEG

(2)若DGDC,BE=6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)

(1)求證:無論m為任何實數(shù),此函數(shù)圖象與x軸總有兩個交點;

(2)若此函數(shù)圖象與x軸的一個交點為(-3,0),求此函數(shù)圖象與x軸的另一個交點坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求A、B、C的坐標;

2)點M為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在雙曲線y上,點B在雙曲線yk≠0)上,ABx軸,過點AADx軸于D.連接OB,與AD相交于點C,若AC=2CD,則k__

查看答案和解析>>

同步練習冊答案