【題目】如圖,在 ABCD 中,點(diǎn) E,F 分別在 ABCD 上,且 AECF

1)求證:四邊形 AECF 是平行四邊形;

2)直接寫出 CE AE 滿足 時, AECF是矩形;

3)直接寫出 CE AE 滿足 時, AECF是菱形.

【答案】1)證明見解析;(2CE AE;(3CE =AE

【解析】

1)由四邊形ABCD是平行四邊形,可得AECF,又AE=CF,所以四邊形AECF是平行四邊形;

2)利用有一個內(nèi)角是直角的平行四邊形是矩形求解;

3)根據(jù)鄰邊相等的平行四邊形是菱形求解.

解:(1)∵四邊形ABCD是平行四邊形,∴ABCD

AECF

又∵AE=CF,

∴四邊形AECF是平行四邊形.

2)由(1)可知,四邊形AECF是平行四邊形

∴當(dāng)CE AE時,∠AEC=90°

AECF是矩形.

故答案為:CE AE

3)由(1)可知,四邊形AECF是平行四邊形

∴當(dāng) CE =AE時, AECF是菱形.

故答案為:CE =AE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,點(diǎn)GBC的中點(diǎn),點(diǎn)HAF上,動點(diǎn)P以每秒2cm的速度沿圖1的邊線運(yùn)動,運(yùn)動路徑為:GCDEFH,相應(yīng)的△ABP的面積ycm2)關(guān)于運(yùn)動時間ts)的函數(shù)圖象如圖2,若AB=6cm,則下列四個結(jié)論中正確的個數(shù)有( 。

①圖1中的BC長是8cm, ②圖2中的M點(diǎn)表示第4秒時y的值為24cm2,

③圖1中的CD長是4cm, ④圖2中的N點(diǎn)表示第12秒時y的值為18cm2

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),繞點(diǎn) .按順時針方向旋轉(zhuǎn), 連接.

1)求證:是等邊三角形;

2)當(dāng)時, 試判斷的形狀,并說明理由;

3)探究:當(dāng)為多少度時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB90°,OC為一條射線,OE,OF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a 0)的圖象,有下列4個結(jié)論:①abc>0;②b>a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,△ABC的三個頂點(diǎn)坐標(biāo)分別為A(-4,1)、B(-1,1)、C(-4,3).

(1)畫出Rt△ABC關(guān)于原點(diǎn)O成中心對稱的圖形Rt△A1B1C1;
(2)若Rt△ABC與Rt△A2BC2關(guān)于點(diǎn)B中心對稱,則點(diǎn)A2的坐標(biāo)為、C2的坐標(biāo)為
(3)求點(diǎn)A繞點(diǎn)B旋轉(zhuǎn)180°到點(diǎn)A2時,點(diǎn)A在運(yùn)動過程中經(jīng)過的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖形及題意填空,并在括號里寫上理由.

己知:如圖,,平分.

試說明:.

解:因?yàn)?/span>平分(已知)

所以(角平分線的定義)

因?yàn)?/span>(已知)

所以∠_________=__________________

____________=____________________

所以.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0 , y0)到直線Ax+By+C=0的距離公式為:d=
例如:求點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離為d= =
根據(jù)以上材料,解決下列問題:
(1)點(diǎn)P1(3,4)到直線y=﹣ x+ 的距離為
(2)已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣ x+b相切,求實(shí)數(shù)b的值;
(3)如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請求出SABP的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案