【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y= 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線AC的解析式;
(2)如圖2,點(diǎn)E(a,b)是對(duì)稱軸右側(cè)拋物線上一點(diǎn),過點(diǎn)E垂直于y軸的直線與AC交于點(diǎn)D(m,n).點(diǎn)P是x軸上的一點(diǎn),點(diǎn)Q是該拋物線對(duì)稱軸上的一點(diǎn),當(dāng)a+m最大時(shí),求點(diǎn)E的坐標(biāo),并直接寫出EQ+PQ+PB的最小值;
(3)如圖3,在(2)的條件下,連結(jié)OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個(gè)單位的速度沿平移,記平移后的△AOM為△A′O'M',同時(shí)拋物線以每秒1個(gè)單位的速度沿x軸正方向平移,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B'.△A'B'M'能否為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)M'的坐標(biāo);若不能,請(qǐng)說明理由.
【答案】(1) ;(2)E(3,),點(diǎn)F(﹣1,),;(3)符合條件的點(diǎn)M'的坐標(biāo)M′(0,).
【解析】
(1)y=,令y=0,x=0,求出A(﹣2,0)、B(4,0)、C(0,﹣2 ),把A、C坐標(biāo)代入y=kx+b,即可求解;
(2)①由n=b,解得:m=﹣ m2+ a,則a+m=a+(﹣m2+a)=﹣(a﹣3)2+ ,即可求解;②F是E關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),則在如圖位置時(shí),EQ+PQ=PF最小,即EQ+PQ+ PB是最小值,即可求解;
(3)設(shè)移動(dòng)的時(shí)間t秒,各點(diǎn)坐標(biāo)為:A′(﹣2+2t)、B′(4+t)、M′(﹣ +2t,t),分AB′2=AM′2、AB′2=BM′2、BM′2=AM′2討論求解.
(1)y=,
令y=0,解得x=﹣2或4,令x=0,則y=﹣2,
∴點(diǎn)A(﹣2,0)、B(4,0)、C(0,﹣2);
把A、C坐標(biāo)代入y=kx+b,
解得:k=﹣,b=﹣2,
∴直線AC的解析式y=﹣x﹣2;
(2)∵E(a,b)在拋物線上,∴b=,
∵D(m,n)在直線AC上,∴n=﹣m﹣2,
∵DE⊥y軸,∴n=b,解得:m=﹣a2+a,
∴a+m=a+(﹣a2+a)=﹣(a﹣3)2+,
∴當(dāng)a=3時(shí),a+m由最大值,b= ,
則:E(3,),點(diǎn)F(﹣1,),
如下圖2所示,連接BC,過點(diǎn)F作FP∥BC,交對(duì)稱軸和x軸于點(diǎn)Q、P,
∵F是E關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),則在如圖位置時(shí),EQ+PQ=PF最小,即EQ+PQ+ PB是最小值,
kBC= =kFP,把kFP和點(diǎn)F坐標(biāo)代入y=kx+b,
解得:b=﹣ ,即:y=x﹣,
令y=0,則x= ,即點(diǎn)P(,0),
則PF= ,而PB=(4﹣)= ,
EQ+PQ+PB=PF+PB= ;
故:點(diǎn)E坐標(biāo)為(3,),EQ+PQ+PB的最小值為;
(3)設(shè)移動(dòng)的時(shí)間t秒,△A′O′M′移動(dòng)到如圖所示的位置,
則此時(shí)各點(diǎn)坐標(biāo)為:A′(﹣2+2t)、B′(4+t)、M′(﹣ +2t,+ t),
則AB′2=6t2﹣12t+36,AM′2= ,BM′2=6t2+3t+ ,
當(dāng)AB′2=AM′2時(shí),6t2﹣12t+36=,方程無解,
當(dāng)AB′2=BM′2時(shí),6t2﹣12t+36=6t2+3t+,t= ,M′(0, ),
當(dāng)BM′2=AM′2時(shí),6t2+3t+=,方程無解,
故:符合條件的點(diǎn)M'的坐標(biāo)M′(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=6,OB=8,OC=10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O'的距離為8;③四邊形AOBO'的面積為24+15; ④∠AOB=150°;⑤s△AOC+S△AOB=9+24,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為1,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角度,使點(diǎn)O的對(duì)應(yīng)點(diǎn)D落在弧AB上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為C,連接BC,則圖中CD、BC和弧BD圍成的封閉圖形面積是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,有,如圖, △DEF的三個(gè)頂點(diǎn)D,E,F分別在△ABC的邊BC,AC,AB上.
(1)已知點(diǎn)F是AB的中點(diǎn).
①如圖①,若△DEF是等邊三角形,試直接寫出正△DEF的邊長;
②如圖②,若, △DEF 的面積為10,求CD的長;
(2)若,DF=DE, △DEF的面積是否存在最小值?若存在,求此時(shí)CD的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn)
如圖1,在有一個(gè)“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
驗(yàn)證
(1)如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.
(2)證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸
(3)如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CB交x軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生每周在校體育鍛煉時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表信息解答下列問題:
時(shí)間(小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
2≤t<3 | 4 | 0.1 |
3≤t<4 | 10 | 0.25 |
4≤t<5 | a | 0.15 |
5≤t<6 | 8 | b |
6≤t<7 | 12 | 0.3 |
合計(jì) | 40 | 1 |
(1)表中的a= ,b= ;
(2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)全;
(3)若該校共有1200名學(xué)生,試估計(jì)全校每周在校參加體育鍛煉時(shí)間至少有4小時(shí)的學(xué)生約為多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請(qǐng)?zhí)砑右粋(gè)條件使矩形ABCD為正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com